Log in

Shikonin promotes rat periodontal bone defect repair and osteogenic differentiation of BMSCs by p38 MAPK pathway

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

In recent years, the treatment of periodontal bone defect has been a major challenge. Cell-based bone tissue engineering provides an advanced way for bone regeneration. Bone formation hinges on the potential of osteogenesis in bone marrow stromal cells (BMSCs). Shikonin (SHI), an active principle of Radix Lithospermi, has shown a striking role to mitigate osteoporosis of ovariectomized mice, whereas its effects on periodontal bone defect are vague. Herein, we explored the impact of SHI on osteogenic differentiation of BMSCs in vitro and further analyzed the potential mechanisms using an inhibitor of p38 MAPK (SB203580). A rat periodontal bone defect model was built to assess its effects on bone formation in vivo by micro-CT and immunofluorescence. Our results showed SHI with no cytotoxicity could conspicuously enhanced alkaline phosphatase (ALP) activity, calcium accumulation and the expression of runt-related transcription factor 2 (Runx2) and osteocalcin (OCN) of BMSCs in vitro. Increased bone volume/tissue volume (BV/TV) and osteopontin (OPN) expression after SHI administration further demonstrated the capacity of promoting osteogenesis of SHI in vivo. Furthermore, SHI could also increase the phosphorylation of p38. However, the phosphorylation of p38 and expression of osteogenic indicators promoted by SHI were reversed by SB203580, thereby illustrating the positive regulatory relationship between p38 MAPK and SHI-mediated osteogenesis. This finding may help SHI become a promising agent with respect to the therapy of periodontal bone defect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. Chavda S, Levin L. Human studies of vertical and horizontal alveolar ridge augmentation comparing different types of bone graft materials: a systematic review. J Oral Implantol. 2018;44(1):74–84.

    Article  PubMed  Google Scholar 

  2. Chatelet M, Afota F, Savoldelli C. Review of bone graft and implant survival rate: a comparison between autogenous bone block versus guided bone regeneration. J Stomatol Oral Maxillofac Surg. 2022;123(2):222–7.

    Article  PubMed  Google Scholar 

  3. Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med. 2011;31(9):66–75.

    Article  Google Scholar 

  4. Taschieri S, Bruno GA, Grecchi E, Paolo S, Girolamo D, Del Fabbro M. Nanotechnology scaffolds for alveolar bone regeneration. Materials (Basel). 2020;13(1):201–20.

    Article  PubMed  Google Scholar 

  5. Deng W, Obrocka M, Fischer I, Prockop DJ. In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem Biophys Res Commun. 2001;282(1):148–52.

    Article  PubMed  Google Scholar 

  6. Guan M, Yao W, Liu R, Lam KS, Nolta J, Jia J, Panganiban B, Meng L, Zhou P, Shahnazari M, Ritchie RO, Lane NE. Directing mesenchymal stem cells to bone to augment bone formation and increase bone mass. Nat Med. 2012;18(3):456–62.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fan C, Zhang X, Upton Z. Anti-inflammatory effects of shikonin in human periodontal ligament cells. Pharm Biol. 2018;56(1):415–21.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tsai MF, Chen SM, Ong AZ, Chung YH, Chen PN, Hsieh YH, Kang YT, Hsu LS. Shikonin induced program cell death through generation of reactive oxygen species in renal cancer cells. Antioxidants (Basel). 2021;10(11):1831–44.

    Article  PubMed  Google Scholar 

  9. Chen K, Yan Z, Wang Y, Yang Y, Cai M, Huang C, Li B, Yang M, Zhou X, Wei X, Yang C, Chen Z, Zhai X, Li M. Shikonin mitigates ovariectomy-induced bone loss and RANKL-induced osteoclastogenesis via TRAF6-mediated signaling pathways. Biomed Pharmacother. 2020;126: 110067.

    Article  PubMed  Google Scholar 

  10. Fang T, Wu Q, Mu S, Yang L, Liu S, Fu Q. Shikonin stimulates MC3T3-E1 cell proliferation and differentiation via the BMP-2/Smad5 signal transduction pathway. Mol Med Rep. 2016;14(2):1269–74.

    Article  PubMed  Google Scholar 

  11. Moustakas A, Heldin CH. Non-smad TGF-beta signals. J Cell Sci. 2005;118(16):3573–84.

    Article  PubMed  Google Scholar 

  12. Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011 Mar;75(1):50–83.

  13. Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev. 2004;68(2):320–44.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cuadrado A, Nebreda AR. Mechanisms and functions of p38 MAPK signalling. Biochem J. 2010;429(3):403–17.

    Article  PubMed  Google Scholar 

  15. Chan YH, Ho KN, Lee YC, Chou MJ, Lew WZ, Huang HM, Lai PC, Feng SW. Melatonin enhances osteogenic differentiation of dental pulp mesenchymal stem cells by regulating MAPK pathways and promotes the efficiency of bone regeneration in calvarial bone defects. Stem Cell Res Ther. 2022;13(1):73–90.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jiang Y, Wu W, Jiao G, Chen Y, Liu H. LncRNA SNHG1 modulates p38 MAPK pathway through Nedd4 and thus inhibits osteogenic differentiation of bone marrow mesenchymal stem cells. Life Sci. 2019;1(228):208–14.

    Article  Google Scholar 

  17. Kang MA, Lee J, Park SH. Cannabidiol induces osteoblast differentiation via angiopoietin1 and p38 MAPK. Environ Toxicol. 2020;35(12):1318–25.

    Article  PubMed  Google Scholar 

  18. Pieróg J, Tamo L, Fakin R, Kocher G, Gugger M, Grodzki T, Geiser T, Gazdhar A, Schmid RA. Bone marrow stem cells modified with human interleukin 10 attenuate acute rejection in rat lung allotransplantation. Eur J Cardiothorac Surg. 2018;53(1):194–200.

    Article  PubMed  Google Scholar 

  19. Liu Q, Zhuang Y, Ouyang N, Yu H. Cytochalasin D promotes osteogenic differentiation of MC3T3-E1 cells via p38-MAPK signaling pathway. Curr Mol Med. 2019;20(1):79–88.

    Article  PubMed  Google Scholar 

  20. Hwang JW, Park WJ, Han Y. Asarylaldehyde enhances osteogenic differentiation of human periodontal ligament stem cells through the ERK/p38 MAPK signaling pathway. Biochem Biophys Res Commun. 2021;19(545):27–32.

    Article  Google Scholar 

  21. Lv L, Wang Y, Zhang J, Zhang T, Li S. Healing of periodontal defects and calcitonin gene related peptide expression following inferior alveolar nerve transection in rats. J Mol Histol. 2014;45(3):311–20.

    Article  PubMed  Google Scholar 

  22. Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med. 2001;7(6):259–64.

    Article  PubMed  Google Scholar 

  23. Uder C, Brückner S, Winkler S, Tautenhahn HM, Christ B. Mammalian MSC from selected species: Features and applications. Cytometry A. 2018;93(1):32–49.

    Article  PubMed  Google Scholar 

  24. Zhou H, Wang S, Xue Y, Shi N. Regulation of the levels of Smad1 and Smad5 in MC3T3-E1 cells by Icariine in vitro. Mol Med Rep. 2014;9(2):590–4.

    Article  PubMed  Google Scholar 

  25. Pan T, Zhang F, Li F, Gao X, Li Z, Li X, Ren X. Shikonin blocks human lung adenocarcinoma cell migration and invasion in the inflammatory microenvironment via the IL-6/STAT3 signaling pathway. Oncol Rep. 2020;44(3):1049–63.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yang Y, Gao W, Tao S, Wang Y, Niu J, Zhao P, Rao C, Yang L. ER-mediated anti-tumor effects of shikonin on breast cancer. Eur J Pharmacol. 2019;15(863): 172667.

    Article  Google Scholar 

  27. Deng B, Qiu B. Shikonin inhibits invasiveness of osteosarcoma through MMP13 suppression. Tumour Biol. 2015;36(12):9311–7.

    Article  PubMed  Google Scholar 

  28. Shindo S, Hosokawa Y, Hosokawa I, Ozaki K, Matsuo T. Shikonin inhibits inflammatory cytokine production in human periodontal ligament cells. Inflammation. 2016;39(3):1124–9.

    PubMed  Google Scholar 

  29. Li J, Pang J, Liu Z, Ge X, Zhen Y, Jiang CC, Liu Y, Huo Q, Sun Y, Liu H. Shikonin induces programmed death of fibroblast synovial cells in rheumatoid arthritis by inhibiting energy pathways. Sci Rep. 2021;11(1):18263.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang B, Chen N, Chen H, Wang Z, Zheng Q. The critical role of redox homeostasis in shikonin-induced HL-60 cell differentiation via unique modulation of the Nrf2/ARE pathway. Oxid Med Cell Longev. 2012;15: 781516.

    Google Scholar 

  31. Kajiura K, Umemura N, Ohkoshi E, Ohta T, Kondoh N, Kawano S. Shikonin induces odontoblastic differentiation of dental pulp stem cells via AKT-mTOR signaling in the presence of CD44. Connect Tissue Res. 2021;62(6):689–97.

    Article  PubMed  Google Scholar 

  32. Gwon SY, Ahn JY, Jung CH, Moon BK, Ha TY. Shikonin suppresses ERK 1/2 phosphorylation during the early stages of adipocyte differentiation in 3T3-L1 cells. BMC Complement Altern Med. 2013;6(13):207–14.

    Article  Google Scholar 

  33. Whyte MP. Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralization. Endocr Rev. 1994;15(4):439–61.

    PubMed  Google Scholar 

  34. Moss DW. Aspects of the relationship between liver, kidney and bone alkaline phosphatases. Prog Clin Biol Res. 1984;166:79–86.

    PubMed  Google Scholar 

  35. Komori T. Runx2, an inducer of osteoblast and chondrocyte differentiation. Histochem Cell Biol. 2018;149(4):313–23.

    Article  PubMed  Google Scholar 

  36. Al Rifai O, Chow J, Lacombe J, Julien C, Faubert D, Susan-Resiga D, Essalmani R, Creemers JW, Seidah NG, Ferron M. Proprotein convertase furin regulates osteocalcin and bone endocrine function. J Clin Invest. 2017;127(11):4104–17.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Song Y, Wu H, Gao Y, Li J, Lin K, Liu B, Lei X, Cheng P, Zhang S, Wang Y, Sun J, Bi L, Pei G. Zinc Silicate/nano-hydroxyapatite/collagen scaffolds promote angiogenesis and bone regeneration via the p38 MAPK pathway in activated monocytes. ACS Appl Mater Interfaces. 2020;12(14):16058–75.

    Article  PubMed  Google Scholar 

  38. Yang X, Yang Y, Zhou S, Gong X, Dai Q, Zhang P, Jiang L. Puerarin stimulates osteogenic differentiation and bone formation through the ERK1/2 and p38-MAPK signaling pathways. Curr Mol Med. 2018;17(7):488–96.

    Article  PubMed  Google Scholar 

  39. Choi H, Jeong BC, Kook MS, Koh JT. Betulinic acid synergically enhances BMP2-induced bone formation via stimulating Smad 1/5/8 and p38 pathways. J Biomed Sci. 2016;23(1):45–53.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ran G, Fang W, Zhang L, Peng Y, Wu A, Li J, Ding X, Zeng S, He Y. Polypeptides IGF-1C and P24 synergistically promote osteogenic differentiation of bone marrow mesenchymal stem cells in vitro through the p38 and JNK signaling pathways. Int J Biochem Cell Biol. 2021;141: 106091.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Natural Science Foundation of Shandong Province (ZR2020MH182, ZR2021MH230), Clinical medicine science and technology innovation plan of **an (202019068, 2022-2-167).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **jiao Yu or Yi Du.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Wang, Y., Guo, X. et al. Shikonin promotes rat periodontal bone defect repair and osteogenic differentiation of BMSCs by p38 MAPK pathway. Odontology 111, 649–657 (2023). https://doi.org/10.1007/s10266-022-00774-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-022-00774-w

Keywords

Navigation