Log in

Fatigue failure load of immature anterior teeth: influence of different fiber post-core systems

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

The aim was to explore the fracture-behavior, survival and marginal-microgaps within the root-canal of immature anterior teeth restored with different fiber-reinforced post-core composites (FRCs). 180 bovine-incisors were randomly divided into 6 groups (n = 30). One group served as control (group 6). The rest of the teeth were prepared to an internal diameter of 1.6 mm and the apex was sectioned. After application of an MTA-plug, teeth were restored with FRC materials: Group 1: Bioblock technique with short fiber-reinforced composite (SFRC); Group 2: Bioblock technique with flowable SFRC; Group 3: Individually-made FRC post; Group 4: Conventional FRC post; Group 5: dual-cure core build-up composite. After restorations were completed, teeth (n = 5/group) were sectioned and then stained. Specimens were viewed under a stereo microscope and the percentage of microgaps within the root-canal was calculated. Fatigue-survival was measured using a cyclic-loading testing machine in the rest of the specimens. Flowable SFRC application in the root-canal (Group 2) did not differ from intact-teeth regarding fatigue-survival (p > 0.05). The rest of the groups produced significantly lower survival (p < 0.05) compared to intact-teeth. Post/core restorations made from conventional FRC post (Group 4) exhibited a high number of microgaps (38.3%) at the examined interphase in the root-canal. The restoration of immature incisors with the use of flowable SFRC as post-core material displayed promising performance in a matter of fatigue-resistance and survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. O’Mullane DM. Injured permanent incisor teeth: an epidemiological study. J Irish Dent Assoc. 1972;18:160–73.

    Google Scholar 

  2. Ravn JJ. Dental injuries in copenhagen school children, school years 1967–1972. Community Dent Oral Epidemiol. 1974;2:231–45.

    Article  PubMed  Google Scholar 

  3. Wilkinson KL, Beeson TJ, Kirkpatrick TC. Fracture resistance of simulated immature teeth filled with resilon, gutta-percha, or composite. J Endod. 2007;33(4):480–3.

    Article  PubMed  Google Scholar 

  4. Andreasen FM, Andreasen JO, Bayer T. Prognosis of root-fractured permanent incisors: prediction of healing modalities. Endod Dent Traumatol. 1989;5:11–22.

    Article  PubMed  Google Scholar 

  5. Andreasen JO, Andreasen FM, Bakland LK, Flores MT. Traumatic dental injuries, a manual 2nd ed, vol. 9. Oxford: Blackwell Munksgaard; 2003. p. 58–60.

    Google Scholar 

  6. Witherspoon DE, Small JC, Regan JD, Nunn M. Retrospective analysis of open apex teeth obturated with mineral trioxide aggregate. J Endod. 2008;34:1171–6.

    Article  PubMed  Google Scholar 

  7. Schmoldt SJ, Kirkpatrick TC, Rutledge RE, Yaccino JM. Reinforcement of simulated immature roots restored with composite resin, mineral trioxide aggregate, gutta-percha, or a fiber post after thermocycling. J Endod. 2011;37(10):1390–3.

    Article  PubMed  Google Scholar 

  8. Jamshidi D, Homayouni H, Moradi Majd N, Shahabi S, Arvin A, Ranjbar Omidi B. Impact and fracture strength of simulated immature teeth treated with mineral trioxide aggregate apical plug and fiber post versus revascularization. J Endod. 2018;44(12):1878–82.

    Article  PubMed  Google Scholar 

  9. Cvek M. Prognosis of luxated non-vital maxillary incisors treated with calcium hydroxide and filled with gutta-percha. A retrospective clinical study. Endod Dent Traumatol. 1992;8(2):45–55.

    Article  PubMed  Google Scholar 

  10. Elnaghy A, Elsaka S. Fracture resistance of simulated immature roots using Biodentine and fiber post compared with different canal-filling materials under aging conditions. Clin Oral Investig. 2019. https://doi.org/10.1007/s00784-019-03014-8[Epub ahead of print] .

    Article  PubMed  Google Scholar 

  11. Linsuwanont P, Kulvitit S, Santiwong B. Reinforcement of simulated immature permanent teeth after mineral trioxide aggregate apexification. J Endod. 2018;44(1):163–7.

    Article  PubMed  Google Scholar 

  12. Garoushi S, Vallittu PK, Lassila LV. Continuous and short fiber reinforced composite in root post-core system of severely damaged incisors. Open Dent J. 2009;18(3):36–41.

    Article  Google Scholar 

  13. Forster A, Sáry T, Braunitzer G, Fráter M. In vitro fracture resistance of endodontically treated premolar teeth restored with a direct layered fiber-reinforced composite post and core. J Adhes Sci Technol. 2016;31:1454–66. https://doi.org/10.1080/01694243.2016.1259758.

    Article  Google Scholar 

  14. Fráter M, Lassila L, Braunitzer G, Vallittu PK, Garoushi S. Fracture resistance and marginal gap formation of post-core restorations: influence of different fiber-reinforced composites. Clin Oral Investig. 2019. https://doi.org/10.1007/s00784-019-02902-3[Epub ahead of print].

    Article  PubMed  Google Scholar 

  15. Lassila L, Keulemans F, Säilynoja E, Vallittu PK, Garoushi S. Mechanical properties and fracture behavior of flowable fiber reinforced composite restorations. Dent Mater. 2018;34(4):598–606.

    Article  PubMed  Google Scholar 

  16. Garoushi S, Vallittu P, Lassila L. Mechanical properties and radiopacity of flowable fiber-reinforced composite. Dent Mater J. 2019;38(2):196–202.

    Article  PubMed  Google Scholar 

  17. Lassila L, Säilynoja E, Prinssi R, Vallittu P, Garoushi S. Characterization of a new fiber-reinforced flowable composite. Odontology. 2019;107(3):342–52.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Scotti N, Coero Borga FA, Alovisi M, Rota R, Pasqualini D, Berutti E. Is fracture resistance of endodontically treated mandibular molars restored with indirect onlay composite restorations influenced by fibre post insertion? J Dent. 2012;40(10):814–20.

    Article  PubMed  Google Scholar 

  19. Le Bell AM, Tanner J, Lassila LV, Kangasniemi I, Vallittu P. Bonding of composite resin luting cement to fiber-reinforced composite root canal posts. J Adhes Dent. 2004;6(4):319–25.

    PubMed  Google Scholar 

  20. Magne P, Lazari PC, Carvalho MA, Johnson T, Del Bel Cury AA. Ferrule-effect dominates over use of a fiber post when restoring endodontically treated incisors: an in vitro study. Oper Dent. 2017;42(4):396–406.

    Article  PubMed  Google Scholar 

  21. Lazari PC, de Carvalho MA, Del Bel Cury AA, Magne P. Survival of extensively damaged endodontically treated incisors restored with different types of posts-and-core foundation restoration material. J Prosthet Dent. 2018;119(5):769–76.

    Article  PubMed  Google Scholar 

  22. Fonseca RB, Haiter-Neto F, Carlo HL, Soares CJ, Sinhoreti MA, Puppin-Rontani RM, Correr-Sobrinho L. Radiodensity and hardness of enamel and dentin of human and bovine teeth, varying bovine teeth age. Arch Oral Biol. 2008;53(11):1023–9.

    Article  PubMed  Google Scholar 

  23. Reis AF, Giannini M, Kavaguchi A, Soares CJ, Line SR. Comparison of microtensile bond strength to enamel and dentin of human, bovine, and porcine teeth. J Adhes Dent. 2004;6(2):117–21.

    PubMed  Google Scholar 

  24. Le Bell-Rönnlöf AM, Lassila LV, Kangasniemi I, Vallittu PK. Load-bearing capacity of human incisor restored with various fiber-reinforced composite posts. Dent Mater. 2011;27(6):e107–15.

    Article  PubMed  Google Scholar 

  25. Magne P, Carvalho AO, Bruzi G, Anderson RE, Maia HP, Giannini M. Influence of no-ferrule and no-post buildup design on the fatigue resistance of endodontically treated molars restored with resin nanoceramic CAD/CAM crowns. Oper Dent. 2014;39:595–602.

    Article  PubMed  Google Scholar 

  26. Tanalp J, Dikbas I, Malkondu O, Ersev H, Güngör T, Bayırlı G. Comparison of the fracture resistance of simulated immature permanent teeth using various canal filling materials and fiber posts. Dent Traumatol. 2012;28(6):457–64.

    Article  PubMed  Google Scholar 

  27. Garoushi S, Gargoum A, Vallittu PK, Lassila L. Short fiber-reinforced composite restorations: a review of the current literature. J Investig Clin Dent. 2018;9(3):e12330.

    Article  PubMed  Google Scholar 

  28. Bijelic-Donova J, Garoushi S, Lassila LV, Keulemans F, Vallittu PK. Mechanical and structural characterization of discontinuous fiber-reinforced dental resin composite. J Dent. 2016;52:70–8.

    Article  PubMed  Google Scholar 

  29. Fráter M, Forster A, Jantyik Á, Braunitzer G, Nagy K, Grandini S. In vitro fracture resistance of premolar teeth restored with fibre-reinforced composite posts using a single or a multi-post technique. Aust Endod J. 2017;43(1):16–22.

    Article  PubMed  Google Scholar 

  30. Ambica K, Mahendran K, Talwar S, Verma M, Padmini G, Periasamy R. Comparative evaluation of fracture resistance under static and fatigue loading of endodontically treated teeth restored with carbon fiber posts, glass fiber posts, and an experimental dentin post system: an in vitro study. J Endod. 2013;39(1):96–100.

    Article  PubMed  Google Scholar 

  31. Faria-e-Silva AL, Pedrosa-Filho Cde F, Menezes Mde S, Silveira DM, Martins LR. Effect of relining on fiber post retention to root canal. J Appl Oral Sci. 2009;17(6):600–4.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Grandini S, Goracci C, Monticelli F, Borracchini A, Ferrari M. SEM evaluation of the cement layer thickness after luting two different posts. J Adhes Dent. 2005;7(3):235–40.

    PubMed  Google Scholar 

  33. Vallittu PK. Are we misusing fiber posts? Guest editorial. Dent Mater. 2016;32(2):125–6.

    Article  PubMed  Google Scholar 

  34. Belli S, Eraslan O, Eskitascioglu G, Karbhari V. Monoblocks in root canals: a finite elemental stress analysis study. Int Endod J. 2011;44(9):817–26.

    Article  PubMed  Google Scholar 

  35. Garoushi S, Säilynoja E, Vallittu PK, Lassila L. Physical properties and depth of cure of a new short fiber reinforced composite. Dent Mater. 2013;29(8):835–41.

    Article  PubMed  Google Scholar 

  36. Lempel E, Őri Z, Szalma J, Lovász BV, Kiss A, Tóth Á, Kunsági-Máté S. Effect of exposure time and pre-heating on the conversion degree of conventional, bulk-fill, fiber reinforced and polyacid-modified resin composites. Dent Mater. 2019;35(2):217–28.

    Article  PubMed  Google Scholar 

  37. Li X, Pongprueksa P, Van Meerbeek B, De Munck J. Curing profile of bulk-fill resin-based composites. J Dent. 2015;43(6):664–72.

    Article  PubMed  Google Scholar 

Download references

Funding

This study belongs to and was supported by the research activity of BioCity Turku Biomaterials Research Program in Turku, Finland and by the UNKP-19-2 New National Excellence Program of The Ministry of Human Capacities, Hungary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márk Fráter.

Ethics declarations

Conflict of interest

Author Márk Fráter declares that he has no conflict of interest. Author Tekla Sáry declares that he has no conflict of interest. Author Viktória Néma Author declares that he has no conflict of interest. Author Gábor Braunitzer declares that he has no conflict of interest. Author Pekka Vallittu declares that he consults Stick Tech–Member of GC in training and RD. Lippo Lassila declares that he has no conflict of interest. Author Sufyan Garoushi declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fráter, M., Sáry, T., Néma, V. et al. Fatigue failure load of immature anterior teeth: influence of different fiber post-core systems. Odontology 109, 222–230 (2021). https://doi.org/10.1007/s10266-020-00522-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-020-00522-y

Keywords

Navigation