Log in

Ectopic expression of a poplar gene NAC13 confers enhanced tolerance to salinity stress in transgenic Nicotiana tabacum

  • Regular Paper – Physiology/Biochemistry/Molecular and Cellular Biology
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

NACs are one of the major transcription factor families in plants which play an important role in plant growth and development, as well as in adverse stress responses. In this study, we cloned a salt-inducible NAC transcription factor gene (NAC13) from a poplar variety 84K, followed by transforming it into both Nicotiana tabacum and Arabidopsis thaliana. Stable expression analysis of 35S::NAC13-GFP fusion protein in Arabidopsis indicated that NAC13 protein was localized to the nucleus. We also obtained five transgenic tobacco lines. Evidence from morphological and physiological characterization and salt treatment analyses indicated that in the transgenic tobacco the salt tolerance was enhanced, suggesting that NAC13 gene may function as a positive regulator in tobacco responses to salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arndt SK, Irawan A, Sanders GJ (2015) Apoplastic water fraction and rehydration techniques introduce significant errors in measurements of relative water content and osmotic potential in plant leaves. Physiol Plant 155:355–368

    CAS  PubMed  Google Scholar 

  • Azarabadi S, Abdollahi H, Torabi M, Salehi Z, Nasiri J (2017) ROS generation, oxidative burst and dynamic expression profiles of ROS-scavenging enzymes of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) in response to Erwinia amylovora in pear (Pyrus communis L). Europ J Plant Pathol 147:279–294

    CAS  Google Scholar 

  • Batchvarova RB, Yakimova ET (2009) Xylanase-induced cell death events in detached tobacco leaves. Biotechnol Biotechnol Equip 23:1199–1204

    Google Scholar 

  • Chai MF, Bellizzi M, Wan CX, Cui ZF, Li YB, Wang GL (2015) The NAC transcription factor OsSWN1 regulates secondary cell wall development in Oryza sativa. J Plant Biol 58:44–51

    CAS  Google Scholar 

  • Dalman K, Wind JJ, Nemesio-Gorriz M, Hammerbacher A, Lundén K, Ezcurra I, Elfstrand M (2017) Overexpression of PaNAC03, a stress induced NAC gene family transcription factor in Norway spruce leads to reduced flavonol biosynthesis and aberrant embryo development. Bmc Plant Biol 17:6

    PubMed  PubMed Central  Google Scholar 

  • Feng HL, Ma NN, Meng X, Zhang S, Wang JR, Chai S, Meng QW (2013) A novel tomato MYC-type ICE1-like transcription factor, SlICE1a, confers cold, osmotic and salt tolerance in transgenic tobacco. Plant Physiol Biochem 73:309–320

    CAS  PubMed  Google Scholar 

  • Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran LSP, Yamaguchi-Shinozaki K, Shinozaki K (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39:863–876

    CAS  PubMed  Google Scholar 

  • Guan HR, Liu X, Niu F, Zhao QQ, Fan N, Cao D, Meng D, He W, Guo B, Wei YH, Fu YP (2019) OoNAC72, a NAC-type Oxytropis ochrocephala transcription factor, conferring enhanced drought and salt stress tolerance in Arabidopsis. Front Plant Sci 10:14

    Google Scholar 

  • Guo B, Wei Y, Xu R, Lin S, Luan H, Lv C, Zhang X, Song X, Xu R (2016) Genome-wide analysis of APETALA2/Ethylene-responsive factor (AP2/ERF) gene family in barley (Hordeum vulgare L.). PLoS ONE 11:e161322

    Google Scholar 

  • Han X, He G, Zhao S, Guo C, Lu M (2012) Expression analysis of two NAC transcription factors PtNAC068 and PtNAC154 from poplar. Plant Mol Biol Rep 30:370–378

    CAS  Google Scholar 

  • He X, Mu R, Cao W, Zhang Z, Zhang J, Chen S (2010) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44:903–916

    Google Scholar 

  • Helene P, Andrea P (2014) Dominant repression by Arabidopsis transcription factor MYB44 causes oxidative damage and hypersensitivity to abiotic stress. Int J Mol Sci 15:2517–2537

    Google Scholar 

  • Hendelman A, Ran S, Zemach H, Arazi T (2013) The tomato NAC transcription factor SlNAM2 is involved in flower-boundary morphogenesis. J Exp Bot 64:5497–5507

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu R, Qi G, Kong Y, Kong D, Gao Q, Zhou G (2010) Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. Bmc Plant Biol 10:145

    PubMed  PubMed Central  Google Scholar 

  • Hu G, Liu Y, Duo T (2018) Antioxidant metabolism variation associated with alkali-salt tolerance in thirty switchgrass (Panicum virgatum) lines. PLoS ONE 13:407

    Google Scholar 

  • Huang Q, Wang Y, Li B, Chang J, Chen M, Li K, Yang G, He G (2015) TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis. Bmc Plant Biol 15:268

    PubMed  PubMed Central  Google Scholar 

  • Hussey SG, Mizrachi E, Spokevicius AV, Bossinger G, Berger DK, Myburg AA (2011) SND2, a NAC transcription factor gene, regulates genes involved in secondary cell wall development in Arabidopsis fibres and increases fibre cell area in Eucalyptus. Bmc Plant Biol 11:173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen MK, Kjaersgaard T, Nielsen MM, Galberg P, Petersen K, O'Shea C, Skriver K (2010) The Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signalling. Biochem J 426:183–196

    CAS  PubMed  Google Scholar 

  • Khokon AR, Okuma E, Hossain MA, Munemasa S, Uraji M, Nakamura Y, Mori IC, Murata Y (2011) Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant Cell Environ 34:434–443

    CAS  PubMed  Google Scholar 

  • Kim YS, Kim SG, Park JE, Park HY, Lim MH, Chua NH, Park CM (2006) A membrane-bound NAC transcription factor regulates cell division in Arabidopsis. Plant Cell 18:3132–3144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S-G, Lee A-K, Yoon H-K, Park C-M (2008) A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination. Plant J 55:77–88

    CAS  PubMed  Google Scholar 

  • Kim HJ, Hong GN, Lim PO (2016) Regulatory network of NAC transcription factors in leaf senescence. Curr Opinion Plant Bio 33:48–56

    Google Scholar 

  • Larsson E, Sitbon F, Sundström J, Arnold SV (2011) NAC regulation of embryo development in conifers. Bmc Proc 5(7):1–2

    Google Scholar 

  • Leonowicz G, Trzebuniak KF, Zimak-Piekarczyk P, Ślesak I, Mysliwa-Kurdziel B (2018) The activity of superoxide dismutases (SODs) at the early stages of wheat deetiolation. PLoS ONE 13(3):e0194678

    PubMed  PubMed Central  Google Scholar 

  • Li Z, Lei Y, Ning Z (2018) Lateral root development in potato is mediated by stu-mi164 regulation of NAC transcription factor. Front Plant Sci 9:383

    Google Scholar 

  • Liu QL, Xu KD, Zhao LJ, Pan YZ, Jiang BB, Zhang HQ, Liu GL (2011) Overexpression of a novel chrysanthemum NAC transcription factor gene enhances salt tolerance in tobacco. Biotechnol Lett 33:2073–2082

    CAS  PubMed  Google Scholar 

  • Liu CC, Liu BG, Yang ZW, Li CM, Wang BC, Yang CP (2012) Genome-wide identification and in silico analysis of poplar peptide deformylases. Int J Mol Sci 13:5112–5124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mao C, Ding W, Wu Y, Yu J, He X, Shou H, Wu P (2007) Overexpression of a NAC-domain protein promotes shoot branching in rice. New Phytol 176:288–298

    CAS  PubMed  Google Scholar 

  • Mochida K, Yoshida T, Sakurai T, Yamaguchishinozaki K, Shinozaki K, Tran LSP (2009) In silico analysis of transcription factor repertoire and prediction of stress responsive transcription factors in soybean. DNA Res 16:353–369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Movahedi A, Zhang J, Gao P, Yang Y, Wang L, Yin T, Kadkhodaei S, Ebrahimi M, Qiang Z (2015) Expression of the chickpea CarNAC3 gene enhances salinity and drought tolerance in transgenic poplars. Plant Cell Tissue Organ Culture 120:141–154

    CAS  Google Scholar 

  • Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta Gene Regul Mech 1819:97–103

    CAS  Google Scholar 

  • Nguyen KH, Mostofa MG, Li W, Ha CV, Watanabe Y, Le DT, Thao NP, Trand LSP (2018) The soybean transcription factor GmNAC085 enhances drought tolerance in Arabidopsis. Environ Exp Bot 151:12–20

    CAS  Google Scholar 

  • Nilles ML (2017) Detection of protein interactions in T3S systems using yeast two-hybrid analysis. Methods Mol Biol (Clifton, NJ) 1531:213–222

    Google Scholar 

  • Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H, Kikuchi S (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene 465:30–44

    CAS  PubMed  Google Scholar 

  • Oda-Yamamizo C, Mitsuda N, Sakamoto S, Ogawa D, Ohme-Takagi M, Ohmiya A (2016) The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in Arabidopsis leaves. Sci Rep 6:23609

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rácz A, Hideg É, Czégény G (2018) Selective responses of class III plant peroxidase isoforms to environmentally relevant UV-B doses. J Plant Physiol 221:101–106

    PubMed  Google Scholar 

  • Shahnejat-Bushehri S, Allu AD, Mehterov N, Thirumalaikumar VP, Alseekh S, Fernie AR, Mueller-Roeber B, Balazadeh S (2017) Arabidopsis NAC transcription factor JUNGBRUNNEN1 exerts conserved control over gibberellin and brassinosteroid metabolism and signaling genes in tomato. Front Plant Sci 8:214

    PubMed  PubMed Central  Google Scholar 

  • Shao J, Haider I, **ong L, Zhu X, Hussain RMF, Overnas E, Meijer AH, Zhang G, Wang M, Bouwmeester HJ, Ouwerkerk PBF (2018) Functional analysis of the HD-Zip transcription factor genes Oshox12 and Oshox14 in rice. PLoS ONE 13:e0199248

    PubMed  PubMed Central  Google Scholar 

  • Sun D, Lu X, Hu Y, Li W, Hong K, Mo Y, Cahill DM, **e J (2013) Methyl jasmonate induced defense responses increase resistance to Fusarium oxysporum f. sp. cubense race 4 in banana. Sci Hortic 164(Complete):484–491

    CAS  Google Scholar 

  • Tanentzap FM, Stempel A, Ryser P (2015) Reliability of leaf relative water content (RWC) measurements after storage: consequences for in situ measurements. Botany 93:535–541

    Google Scholar 

  • Wang X, Basnayake BM, Zhang H, Li G, Li W, Virk N, Mengiste T, Song F (2009) The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. Mol Plant-Microbe Interact 22:1227–1238

    CAS  PubMed  Google Scholar 

  • Wang L, Li Z, Lu M, Wang Y (2017a) ThNAC13, a NAC transcription factor from Tamarix hispida, confers salt and osmotic stress tolerance to transgenic Tamarix and Arabidopsis. Front Plant Sci 8:13

    Google Scholar 

  • Wang Y, Jia D, Guo J, Zhang X, Guo C, Yang Z (2017b) Antioxidant metabolism variation associated with salt tolerance of six maize (Zea mays L.) cultivars. Acta Ecol Sin 37:368–372

    Google Scholar 

  • Wang L, Sun Y, **a X-L, Jiang T-B (2018) Screening of proteins interacting with ERF transcriptional factor from Populus simonii × P.nigra by yeast two-hybrid method. Biotechnol Biotechnol Equip 32:543–549

    CAS  Google Scholar 

  • Wu Y, Deng Z, Lai J, Zhang Y, Yang C, Yin B, Zhao Q, Zhang L, Li Y, Yang C, **e Q (2009) Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res 19:1279–1290

    CAS  PubMed  Google Scholar 

  • **uren Z, Rossana H, Shih-Shun L, Qi-Wen N, Nam-Hai C (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1:641

    Google Scholar 

  • Yao W, Wang L, Zhou B, Wang S, Li R, Jiang T (2016a) Over-expression of poplar transcription factor ERF76 gene confers salt tolerance in transgenic tobacco. J Plant Physiol 198:23–31

    CAS  PubMed  Google Scholar 

  • Yao W, Wang S, Zhou B, Jiang T, Li C (2016b) Transgenic poplar overexpressing the endogenous transcription factor ERF76 gene improves salinity tolerance. Tree Physiol 36:896–908

    CAS  PubMed  Google Scholar 

  • Yu S, Huang A, Jia L, Lin G, Feng Y, Pemberton E, Chen C (2018) OsNAC45 plays complex roles by mediating POD activity and the expression of development-related genes under various abiotic stresses in rice root. Plant Growth Regul 84:519–531

    CAS  Google Scholar 

  • Yujie F, Kaifeng L, Hao D, Yan X, Huazhi S, **anghua L, Lizhong X (2015) A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. J Exp Bot 66:6803–6817

    Google Scholar 

  • Yu-Jun H, Wei W, Qing-**n S, Hao-Wei C, Yu-Qin Z, Fang W, Hong-Feng Z, Gang L, Ai-Guo T, Wan-Ke Z (2011) Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J Cell Mol Biol 68:302–313

    Google Scholar 

  • Zhang Y, Li D, Wang Y, Rong Z, Zhang X (2018) Genome-wide identification and comprehensive analysis of the NAC transcription factor family in Sesamum indicum. PLoS ONE 13:e0199262

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

TJ and BZ designed research. ZC conducted experiments, data analysis and wrote the manuscript. XZ and KZ performed in data analysis. All authors read and approved the manuscript. This work was supported by the National Key Program on Transgenic Research (2018ZX08020002) and the 111 project (B16010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Boru Zhou or Tingbo Jiang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 42 kb)

Supplementary file2 (XLSX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Z., Zhang, X., Zhao, K. et al. Ectopic expression of a poplar gene NAC13 confers enhanced tolerance to salinity stress in transgenic Nicotiana tabacum. J Plant Res 133, 727–737 (2020). https://doi.org/10.1007/s10265-020-01213-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-020-01213-z

Keywords

Navigation