Log in

Leukotriene enhanced allergic lung inflammation through induction of chemokine production

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

The leukotrienes (LTs) enhance allergen- and interleukin (IL)-13-dependent allergic lung inflammatory disease. However, the precise requirement of LTs and the mechanism by which they elicit allergic lung responses remain uncertain. To clarify the involvement of LTs in respiratory allergen- and IL-13-induced experimental asthma and elucidate the underlying mechanisms of LTs-mediated enhanced allergic asthma, we investigated the role of LTs in two models of allergic inflammation: intranasal Aspergillus protease allergen and recombinant IL-13-induced T helper type 2 (Th2) cell-mediated inflammation, and also examined Th2-related chemokines downstream of LTs signaling. 5-Lipoxygenase (5-LO)-deficient mice exposed to short-term intranasal Aspergillus protease allergen showed attenuated airway inflammation, decreased airway hyper-responsiveness and reduced bronchoalveolar eosinophilia when compared to wild-type mice. However, this phenotype was less apparent using long exposure to the same allergen. 5-LO-deficient mice exposed to intranasal rIL-13 also showed attenuated phenotypes of allergic asthma via significant reduction in Th2-specific chemokines, CCL7 and CCL17 production and decreased Th2 cells recruitment to the lungs. Addition of leukotriene B4 (LTB4) and LTC4 to the airways of 5-LO-deficient mice resulted in the rescue of rIL-13-induced experimental asthma. Furthermore, LTs addition to rIL-13 synergistically enhanced the production of Th2-specific chemokines in the lung and inflammatory responses. Therefore, our findings suggest that LTs complement allergens and their downstream cytokine (e.g., IL-13) induced Th2 inflammation by enhancing the induction of Th2 chemokines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D’Amato G, Cecchi L, D’Amato M, Liccardi G (2010) Urban air pollution and climate change as environmental risk factors of respiratory allergy: an update. J Investig Allergol Clin Immunol 20(2):95–102 (quiz following 102)

    PubMed  Google Scholar 

  2. Cohn L, Elias JA, Chupp GL (2004) Asthma: mechanisms of disease persistence and progression. Annu Rev Immunol 22:789–815

    Article  CAS  PubMed  Google Scholar 

  3. Corry DB, Kheradmand F (2002) Biology and therapeutic potential of the interleukin-4/interleukin-13 signaling pathway in asthma. Am J Respir Med 1(3):185–193

    Article  CAS  PubMed  Google Scholar 

  4. Lee CG, Homer RJ, Zhu Z, Lanone S, Wang X, Koteliansky V, Shipley JM, Gotwals P, Noble P, Chen Q, Senior RM, Elias JA (2001) Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor beta(1). J Exp Med 194(6):809–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Baram D, Vaday GG, Salamon P, Drucker I, Hershkoviz R, Mekori YA (2001) Human mast cells release metalloproteinase-9 on contact with activated T cells: juxtacrine regulation by TNF-alpha. J Immunol 167(7):4008–4016

    Article  CAS  PubMed  Google Scholar 

  6. Kuperman DA, Huang X, Koth LL, Chang GH, Dolganov GM, Zhu Z, Elias JA, Sheppard D, Erle DJ (2002) Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nat Med 8(8):885–889

    CAS  PubMed  Google Scholar 

  7. Mattes J, Yang M, Siqueira A, Clark K, MacKenzie J, McKenzie AN, Webb DC, Matthaei KI, Foster PS (2001) IL-13 induces airways hyperreactivity independently of the IL-4R alpha chain in the allergic lung. J Immunol 167(3):1683–1692

    Article  CAS  PubMed  Google Scholar 

  8. Walter DM, McIntire JJ, Berry G, McKenzie AN, Donaldson DD, DeKruyff RH, Umetsu DT (2001) Critical role for IL-13 in the development of allergen-induced airway hyperreactivity. J Immunol 167(8):4668–4675

    Article  CAS  PubMed  Google Scholar 

  9. Elias JA, Lee CG, Zheng T, Shim Y, Zhu Z (2003) Interleukin-13 and leukotrienes: an intersection of pathogenetic schema. Am J Respir Cell Mol Biol 28(4):401–404

    Article  CAS  PubMed  Google Scholar 

  10. Leff AR (2000) Role of leukotrienes in bronchial hyperresponsiveness and cellular responses in airways. Am J Respir Crit Care Med 161(2 Pt 2):S125–S132

    Article  CAS  PubMed  Google Scholar 

  11. Haeggstrom JZ, Funk CD (2011) Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem Rev 111(10):5866–5898. doi:10.1021/cr200246d

    Article  PubMed  Google Scholar 

  12. Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53:275–297. doi:10.1146/annurev.arplant.53.100301.135248

    Article  CAS  PubMed  Google Scholar 

  13. Tug T, Godekmerdan A, Sari N, Karatas F, Erdem ES (2007) Effects of supportive treatment such as antioxidant or leukotriene receptor antagonist drugs on inflammatory and respiratory parameters in asthma patients. Clin Pharmacol Ther 81(3):371–376. doi:10.1038/sj.clpt.6100091

    Article  CAS  PubMed  Google Scholar 

  14. Singh RK, Gupta S, Dastidar S, Ray A (2010) Cysteinyl leukotrienes and their receptors: molecular and functional characteristics. Pharmacology 85(6):336–349. doi:10.1159/000312669

    Article  CAS  PubMed  Google Scholar 

  15. Thivierge M, Stankova J, Rola-Pleszczynski M (2001) IL-13 and IL-4 up-regulate cysteinyl leukotriene 1 receptor expression in human monocytes and macrophages. J Immunol 167(5):2855–2860

    Article  CAS  PubMed  Google Scholar 

  16. Vargaftig BB, Singer M (2003) Leukotrienes mediate murine bronchopulmonary hyperreactivity, inflammation, and part of mucosal metaplasia and tissue injury induced by recombinant murine interleukin-13. Am J Respir Cell Mol Biol 28(4):410–419

    Article  CAS  PubMed  Google Scholar 

  17. Yoshie O (2000) Role of chemokines in trafficking of lymphocytes and dendritic cells. Int J Hematol 72(4):399–407

    CAS  PubMed  Google Scholar 

  18. Kunkel EJ, Butcher EC (2002) Chemokines and the tissue-specific migration of lymphocytes. Immunity 16(1):1–4

    Article  CAS  PubMed  Google Scholar 

  19. Matsukawa A, Hogaboam CM, Lukacs NW, Kunkel SL (2000) Chemokines and innate immunity. Rev Immunogenet 2(3):339–358

    CAS  PubMed  Google Scholar 

  20. Ono SJ, Nakamura T, Miyazaki D, Ohbayashi M, Dawson M, Toda M (2003) Chemokines: roles in leukocyte development, trafficking, and effector function. J Allergy Clin Immunol 111(6):1185–1199 (quiz 1200)

    Article  CAS  PubMed  Google Scholar 

  21. D’Ambrosio D, Albanesi C, Lang R, Girolomoni G, Sinigaglia F, Laudanna C (2002) Quantitative differences in chemokine receptor engagement generate diversity in integrin-dependent lymphocyte adhesion. J Immunol 169(5):2303–2312

    Article  PubMed  Google Scholar 

  22. Johnston B, Butcher EC (2002) Chemokines in rapid leukocyte adhesion triggering and migration. Semin Immunol 14(2):83–92

    Article  CAS  PubMed  Google Scholar 

  23. Chen XS, Sheller JR, Johnson EN, Funk CD (1994) Role of leukotrienes revealed by targeted disruption of the 5-lipoxygenase gene. Nature 372(6502):179–182

    Article  CAS  PubMed  Google Scholar 

  24. Lee SH, Prince JE, Rais M, Kheradmand F, Shardonofsky F, Lu H, Beaudet AL, Smith CW, Soong L, Corry DB (2003) Differential requirement for CD18 in T-helper effector homing. Nat Med 9(10):1281–1286. doi:10.1038/nm932

    Article  CAS  PubMed  Google Scholar 

  25. Lee SH, Kiss A, Xu J, Qian Y, Bashoura L, Kheradmand F, Corry DB (2004) Airway glycoprotein secretion parallels production and predicts airway obstruction in pulmonary allergy. J Allergy Clin Immunol 113(1):72–78. doi:10.1016/j.jaci.2003.09.039

    Article  CAS  PubMed  Google Scholar 

  26. Corry DB, Rishi K, Kanellis J, Kiss A, Song LZ, Xu J, Feng L, Werb Z, Kheradmand F (2002) Decreased allergic lung inflammatory cell egression and increased susceptibility to asphyxiation in MMP2-deficiency. Nat Immunol 3(4):347–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Corry DB, Grunig G, Hadeiba H, Kurup VP, Warnock ML, Sheppard D, Rennick DM, Locksley RM (1998) Requirements for allergen-induced airway hyperreactivity in T and B cell-deficient mice. Mol Med 4(5):344–355

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tager AM, Bromley SK, Medoff BD, Islam SA, Bercury SD, Friedrich EB, Carafone AD, Gerszten RE, Luster AD (2003) Leukotriene B4 receptor BLT1 mediates early effector T cell recruitment. Nat Immunol 4(10):982–990

    Article  CAS  PubMed  Google Scholar 

  29. Kheradmand F, Kiss A, Xu J, Lee SH, Kolattukudy PE, Corry DB (2002) A protease-activated pathway underlying Th cell type 2 activation and allergic lung disease. J Immunol 169(10):5904–5911

    Article  CAS  PubMed  Google Scholar 

  30. Lamhamedi-Cherradi SE, Martin RE, Ito T, Kheradmand F, Corry DB, Liu YJ, Moyle M (2008) Fungal proteases induce Th2 polarization through limited dendritic cell maturation and reduced production of IL-12. J Immunol 180(9):6000–6009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Grunig G, Warnock M, Wakil AE, Venkayya R, Brombacher F, Rennick DM, Sheppard D, Mohrs M, Donaldson DD, Locksley RM, Corry DB (1998) Requirement for IL-13 independently of IL-4 in experimental asthma. Science 282(5397):2261–2263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wills-Karp M, Luyimbazi J, Xu X, Schofield B, Neben TY, Karp CL, Donaldson DD (1998) Interleukin-13: central mediator of allergic asthma. Science 282(5397):2258–2261

    Article  CAS  PubMed  Google Scholar 

  33. Han B, Luo G, Shi ZZ, Barrios R, Atwood D, Liu W, Habib GM, Sifers RN, Corry DB, Lieberman MW (2002) Gamma-glutamyl leukotrienase, a novel endothelial membrane protein, is specifically responsible for leukotriene D(4) formation in vivo. Am J Pathol 161(2):481–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chavez J, Young HW, Corry DB, Lieberman MW (2006) Interactions between leukotriene C4 and interleukin 13 signaling pathways in a mouse model of airway disease. Arch Pathol Lab Med 130(4):440–446

    CAS  PubMed  Google Scholar 

  35. Shim YM, Zhu Z, Zheng T, Lee CG, Homer RJ, Ma B, Elias JA (2006) Role of 5-lipoxygenase in IL-13-induced pulmonary inflammation and remodeling. J Immunol 177(3):1918–1924

    Article  CAS  PubMed  Google Scholar 

  36. Miyahara N, Takeda K, Miyahara S, Taube C, Joetham A, Koya T, Matsubara S, Dakhama A, Tager AM, Luster AD, Gelfand EW (2005) Leukotriene B4 receptor-1 is essential for allergen-mediated recruitment of CD8 + T cells and airway hyperresponsiveness. J Immunol 174(8):4979–4984

    Article  CAS  PubMed  Google Scholar 

  37. Chibana K, Ishii Y, Asakura T, Fukuda T (2003) Up-regulation of cysteinyl leukotriene 1 receptor by IL-13 enables human lung fibroblasts to respond to leukotriene C4 and produce eotaxin. J Immunol 170(8):4290–4295

    Article  CAS  PubMed  Google Scholar 

  38. Zhou X, Hu H, Balzar S, Trudeau JB, Wenzel SE (2012) MAPK regulation of IL-4/IL-13 receptors contributes to the synergistic increase in CCL11/eotaxin-1 in response to TGF-beta1 and IL-13 in human airway fibroblasts. J Immunol 188(12):6046–6054. doi:10.4049/jimmunol.1102760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hashimoto K, Ichiyama T, Hasegawa M, Hasegawa S, Matsubara T, Furukawa S (2009) Cysteinyl leukotrienes induce monocyte chemoattractant protein-1 in human monocyte/macrophages via mitogen-activated protein kinase and nuclear factor-kappaB pathways. Int Arch Allergy Immunol 149(3):275–282. doi:10.1159/000199724

    Article  CAS  PubMed  Google Scholar 

  40. Ichiyama T, Hasegawa M, Ueno Y, Makata H, Matsubara T, Furukawa S (2005) Cysteinyl leukotrienes induce monocyte chemoattractant protein 1 in human monocytes/macrophages. Clin Exp Allergy: J Br Soc Allergy Clin Immunol 35(9):1214–1219. doi:10.1111/j.1365-2222.2005.02323.x

    Article  CAS  Google Scholar 

  41. Kuperman D, Schofield B, Wills-Karp M, Grusby MJ (1998) Signal transducer and activator of transcription factor 6 (Stat6)-deficient mice are protected from antigen-induced airway hyperresponsiveness and mucus production. J Exp Med 187(6):939–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nelms K, Keegan AD, Zamorano J, Ryan JJ, Paul WE (1999) The IL-4 receptor: signaling mechanisms and biologic functions. Annu Rev Immunol 17:701–738

    Article  CAS  PubMed  Google Scholar 

  43. Drazen JM, Israel E, O’Byrne PM (1999) Treatment of asthma with drugs modifying the leukotriene pathway. N Engl J Med 340(3):197–206

    Article  CAS  PubMed  Google Scholar 

  44. Currie GP, Srivastava P, Dempsey OJ, Lee DK (2005) Therapeutic modulation of allergic airways disease with leukotriene receptor antagonists. QJM 98(3):171–182

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Jie Xu, Yu** Qian, Seang-Hwan Jung, Sang-Young Lee and Eun-Hye Choi for technical assistance, and all the members of the Hye Hwa Forum for helpful comments on the manuscript. This study was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government (MEST, 2012M3A9C7050093), a grant of the Korea Healthcare technology R&D Project, Ministry for Health, Welfare & Family Affairs, the Republic of Korea (A101284), the KAIST Future Systems Healthcare Project from the Ministry of Science, ICT and Future Planning, and Eulji University in 2008.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Hyo Lee.

Additional information

Kihyuk Shin and Jung Joo Hwang have made equal contributions to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, K., Hwang, J.J., Kwon, BI. et al. Leukotriene enhanced allergic lung inflammation through induction of chemokine production. Clin Exp Med 15, 233–244 (2015). https://doi.org/10.1007/s10238-014-0292-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-014-0292-7

Keywords

Navigation