Log in

In silico analysis of the anti-hypertensive drugs impact on myocardial oxygen balance

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Hypertension is a very common pathology, and its clinical treatment largely relies on different drugs. Some of these drugs exhibit specific protective functions in addition to those resulting from blood pressure reduction. In this work, we study the impact of commonly used anti-hypertensive drugs (RAAS, \(\beta \) and calcium channel blockers) on myocardial oxygen supply–consumption balance, which plays a crucial role in type 2 myocardial infarction. To this aim, 42 wash-out hypertensive patients were selected, a number of measured data were used to set a validated multi-scale cardiovascular model to subject-specific conditions, and the administration of different drugs was suitably simulated. Our results ascribe the well-known major cardioprotective efficiency of \(\beta \) blockers compared to other drugs to a positive change of myocardial oxygen balance due to the concomitant: (1) reduction in aortic systolic, diastolic and pulse pressures, (2) decrease in left ventricular work, diastolic cavity pressure and oxygen consumption, (3) increase in coronary flow and (4) ejection efficiency improvement. RAAS blockers share several positive outcomes with \(\beta \) blockers, although to a reduced extent. In contrast, calcium channel blockers seem to induce some potentially negative effects on the myocardial oxygen balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bache RJ (1988) Effects of hypertrophy on the coronary circulation. Prog Cardiovasc Dis 30(6):403–440

    Article  Google Scholar 

  • Buckberg G, Fixler D, Archie J, Hoffman J (1972) Experimental subendocardial ischemia in dogs with normal coronary arteries. Circ Res 1(30):67–81

    Article  Google Scholar 

  • Cheng H, Lang D, Tufanaru C, Pearson A (2013) Measurement accuracy of non-invasively obtained central blood pressure by applanation tonometry: a systematic review and meta-analysis. Int J Cardiol 167(5):1867–1876

    Article  Google Scholar 

  • Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling-concepts and clinical implications: a consensus paper from an International Forum on Cardiac Remodeling. J Am Coll Cardiol 35(3):569–582

    Article  Google Scholar 

  • Davies JE, Whinnett ZI, Francis DP, Manisty CH, Aguado-Sierra J, Willson K, Foale RA, Malik IS, Hughes AD, Parker KH, Mayet J (2006) Evidence of a dominant backward-propagating suction wave responsible for diastolic coronary filling in humans, attenuated in left ventricular hypertrophy. Circulation 113(14):1768–1778

    Article  Google Scholar 

  • Dhakam Z, McEniery C, Cockcroft J, Brown M, Wilkinson IB (2006) Atenolol and eprosartan: differential effects on central blood pressure and aortic pulse wave velocity. Am J Hypertens 19(2):214–219

    Article  Google Scholar 

  • Dhakam Z, McEniery CM, Burton T, Brown M J, Wilkinson I B (2008) A comparison of atenolol and nebivolol in isolated systolic hypertension. J Hypertens 26(2):351–356

    Article  Google Scholar 

  • Doughty RN, Whalley GA, Gamble G, MacMahon S, Sharpe N (1997) Left ventricular remodeling with carvedilol in patients with congestive heart failure due to ischemic heart disease. J Am Coll Cardiol 29(5):1060–1066

    Article  Google Scholar 

  • Guala A, Camporeale C, Ridolfi L (2015) Compensatory effect between aortic stiffening and remodelling during ageing. PLoS ONE 10(10):e0139211. doi:10.1371/journal.pone.0139211

  • Guala A, Camporeale C, Tosello F, Canuto C, Ridolfi L (2015) Modelling and subject-specific validation of the heart-arterial tree system. Ann Biom Eng 43(1):222–237

    Article  Google Scholar 

  • Guala A, Scalseggi M, Ridolfi L (2015) Coronary fluid mechanics in an ageing cardiovascular system. Meccanica 1:1–12

    Google Scholar 

  • Haber HL, Simek CL, Gimple LW, Bergin JD, Subbiah K, Jayaweera AR et al (1993) Why do patients with congestive heart failure tolerate the initiation of beta-blocker therapy? Circulation 88(4):1610–1619

    Article  Google Scholar 

  • Ibrahim M, el Boghdadly B, Zaghloul S (1996) Hemodynamic and 24-h blood pressure profile of amlodipine monotherapy. J Hum Hypertens 10(7):489–494

    Google Scholar 

  • Iftikhar IH, Blankfield R, Hassan N, Tisch D (2013) Meta-analysis of the hemodynamic properties of antihypertensive medications. ISNR Hypertension 2013

  • Izzo J, Saleem O, Khan S, Osmond P (2015) Differential effects nebivolol and valsartan alone and in combination on 24-hour ambulatory rate-pressure product, stroke load, and blood pressure-heart rate variability. J Hypertens 33(1):93

    Article  Google Scholar 

  • Katz L, Feinberg H (1958) The relation of cardiac effort to myocardial oxygen consumption and coronary flow. Circ Res 5(6):656–669

    Article  Google Scholar 

  • Koifman B, Topilski I, Megidish R, Zelmanovich L, Chernihovsky T, Bykhovsy E, Keren G (2006) Effects of losartan+ L-arginine on nitric oxide production, endothelial cell function, and hemodynamic variables in patients with heart failure secondary to coronary heart disease. Am J Cardiol 98(2):172–177

    Article  Google Scholar 

  • Korakianitis T, Shi Y (2006) Numerical simulation of cardiovascular dynamics with healthy and diseased heart valves. J Biomech 39(11):1964–1982

    Article  Google Scholar 

  • Lee J, Nordsletten D, Cookson A, Rivolo S, Smith N (2016) In silico coronary wave intensity analysis: application of an integrated one-dimensional and poromechanical model of cardiac perfusion. Biomech Model Mechanobiol 15(6):1535–1555

  • London GM, Pannier B, Guerin AP, Marchais SJ, Safar ME, Cuche J-L (1994) Cardiac hypertrophy, aortic compliance, peripheral resistance, and wave reflection in end-stage renal disease. Circulation 90(6):2786–2796

    Article  Google Scholar 

  • Magrini F, Shimizu M, Roberts N, Fouad F, Tarazi R, Zanchetti A (1987) Converting-enzyme inhibition and coronary blood flow. Circulation 75(1 Pt 2):168–174

    Google Scholar 

  • Mancia G, Fagard R, Narkiewicz K, Redón J, Zanchetti A, Böhm M et al (2012) 2013 ESH/ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the european society of hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens 31(7):1281–1357

    Article  Google Scholar 

  • Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M et al (2015) Heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation 133:e38–e360

    Article  Google Scholar 

  • Mynard JP, Penny DJ, Smolich JJ (2014) Scalability and in vivo validation of a multiscale numerical model of the left coronary circulation. Am J Physiol Heart Circ Physiol 306(4):517–528

  • Mynard JP, Smolich JJ (2016) Influence of anatomical dominance and hypertension on coronary conduit arterial and microcirculatory flow patterns: a multiscale modeling study. Am J Physiol Heart Circ Physiol 311(1):11–23

    Article  Google Scholar 

  • Nichols W, O’Rourke M (2005) McDonald’s blood flow in arteries, Arnold

  • Ong K-T, Delerme S, Pannier B, Safar ME, Benetos A, Laurent S, Boutouyrie P (2011) Aortic stiffness is reduced beyond blood pressure lowering by short-term and long-term antihypertensive treatment: a meta-analysis of individual data in 294 patients. J Hypertens 29(6):1034–1042

    Article  Google Scholar 

  • Osranek M, Eisenach JH, Khandheria BK, Chandrasekaran K, Seward JB, Belohlavek M (2008) Arterioventricular coupling and ventricular efficiency after antihypertensive therapy: a noninvasive prospective study. Hypertension 51(2):275–281

    Article  Google Scholar 

  • Peralta CA, Shlipak MG, Wassel-Fyr C, Bosworth H, Hoffman B et al (2007) Association of antihypertensive therapy and diastolic hypotension in chronic kidney disease. Hypertension 50:474–480

    Article  Google Scholar 

  • Picca M, Bisceglia J, Zocca A, Pelosi G (1997) Effects of enalapril and amlodipine on left ventricular hypertrophy and function in essential hypertension. Clin Drug Invest 13:29–35

    Article  Google Scholar 

  • Protogerou AD (2010) Effect of antihypertensive drugs on central blood pressure over and above brachial blood pressure: focusing on blood pressure amplification. Medicographia 32(3):254–260

    Google Scholar 

  • Rahko P S (2005) An echocardiographic analysis of the long-term effects of carvedilol on left ventricular remodeling, systolic performance, and ventricular filling patterns in dilated cardiomyopathy. Echocardiography (Mount Kisco, NY) 22(7):547–554

    Article  Google Scholar 

  • Reymond P, Bohraus Y, Perren F, Lazeyras F, Stergiopulos N (2011) Validation of a patient-specific one-dimensional model of the systemic arterial tree. Am J Physiol Heart C 301(3):H1173–H1182

    Article  Google Scholar 

  • Reymond P, Merenda F, Perren F, Rüfenacht D, Stergiopulos N (2009) Validation of a one-dimensional model of the systemic arterial tree. Am J Physiol Heart C 297(1):208–222

    Article  Google Scholar 

  • Rosendorff C, Lackland DT, Allison M, Aronow WS, Black HR, Blumenthal RS et al (2015) Treatment of hypertension in patients with coronary artery disease: a scientific statement from the American Heart Association, American College of Cardiology, and American Society of Hypertension. Hypertension 65(6):1372–1407

    Article  Google Scholar 

  • Sarnoff S, Braunwald E, Welch G, Case R, Stainsby W, Macruz R (1958) Hemodynamic determinants of oxygen consumption of the heart with special reference to the tension-time index. Am J Physiol 192(1):148–156

    Google Scholar 

  • Shishido T, Hayashi K, Shigemi K, Sato T, Sugimachi M, Sunagawa K (2000) Single-beat estimation of end-systolic elastance using bilinearly approximated time-varying elastance curve. Circulation 102(16):1983–1989

    Article  Google Scholar 

  • Sluyter JD, Hughes AD, Lowe A, Parker KH, Camargo CA, Hametner B et al (2016) Different associations between beta-blockers and other antihypertensive medication combinations with brachial blood pressure and aortic waveform parameters. Int J Cardiol 219:257–263

    Article  Google Scholar 

  • Smulyan H, Siddiqui DS, Carlson RJ, London GM, Safar ME (2003) Clinical utility of aortic pulses and pressures calculated from applanated radial-artery pulses. Hypertension 42(2):150–155

    Article  Google Scholar 

  • Suga H (1990) Ventricular energetics. Physiol Rev 70(2):247–277

    Google Scholar 

  • Suga H, Sagawa K (1974) Instantaneous pressure–volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res 35:117–126

  • Tanaka K, Oshita S, Kitahata H, Kimura H, Kawahito S, Park Y C, Sakabe T (1998) Effects of nicardipine on ventriculo-arterial coupling in humans. Brit J Anaesth 81(2):180–185

  • Thomopoulos C, Parati G, Zanchetti A(2014) Effects of blood pressure lowering on outcome incidence in hypertension: 4. Effects of various classes of antihypertensive drugs—overview and meta-analyses. J Hypertens 33(2):195–211

  • Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR et al (2012) Third universal definition of myocardial infarction. Eur Heart J 33(20):2551–2567

    Article  Google Scholar 

  • Ting C-T, Chou C, Chang MS, Wang SP, Chiang BN, Yin FC (1991) Arterial hemodynamics in human hypertension effects of adrenergic blockade. Circulation 84:1049–1057

    Article  Google Scholar 

  • Tosello F, Guala A, Leone D, Camporeale C, Bruno G, Ridolfi L et al (2016) Central pressure appraisal: clinical validation of a subject-specific mathematical model. PLoS ONE 11(3):e0151523. doi:10.1371/journal.pone.0151523

  • Westerhof N, Elzinga G, Sipkema P (1971) An artificial arterial system for pum** hearts. J Appl Physiol 31:776–781

    Google Scholar 

  • Westerhof N, Stergiopulos N, Noble M (2010) Snapshots of hemodynamics. Springer, New York

    Book  Google Scholar 

  • Wittstein I S, Kass D a, Pak P H, Maughan W L, Fetics B J, Hare J M (2001) Cardiac nitric oxide production due to angiotensin-converting enzyme inhibition decreases beta-adrenergic myocardial contractility in patients with dilated cardiomyopathy. J Am Coll Cardiol 38(2):429–435

    Article  Google Scholar 

Download references

Acknowledgements

This research has been funded by the Ministry of Health (Italy) (Ricerca Sanitaria Finalizzata 2013—GR-2013-02356887). The authors gratefully acknowledge Eleonora Avenatti for her valuable help in proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Guala.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 28 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guala, A., Leone, D., Milan, A. et al. In silico analysis of the anti-hypertensive drugs impact on myocardial oxygen balance. Biomech Model Mechanobiol 16, 1035–1047 (2017). https://doi.org/10.1007/s10237-017-0871-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-017-0871-0

Keywords

Navigation