Log in

Westward intensification in marginal seas

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

An idealized model was used to examine why the strong western boundary current (WBC) is observed in the South China Sea (SCS) but not in the Gulf of Mexico (GOM) and Japan/East Sea (JES). Results suggested that the stronger WBC in the SCS is mainly attributed to the direct contribution of the inflow and the strong monsoon. Although the Gulf Stream transports a large amount of water into the GOM, the passage in the southeast corner guides the inflow out of the gulf and inhibits the inflow from intensifying the WBC. Meanwhile, the wind stress in the GOM is weakest among the three marginal seas. The meridional ocean ridge and the particular layout of the continental slope of JES prevent the whole basin from participating in the westward intensification. Besides, the throughflow has adverse effects on the formulation of WBC in JES. The variation of Coriolis parameter with latitude leads to the westward intensification in marginal seas. However, a strong WBC cannot be observed in the absence of reasonable collocation of wind, inflow, and topography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Blumberg AF, Mellor GL (1987) A description of a three-dimensional coastal ocean circulation model. In: Heaps NS (ed) Three-dimensional coastal ocean models. Coastal and estuarine series, vol 4. American Geophysical Union, Washington, DC, pp 1–16

  • Caruso MJ, Gawarkiewicz GG, Beardsley RC (2006) Interannual variability of the Kuroshio intrusion in the South China Sea. J Oceanogr 62(4):559–575

    Article  Google Scholar 

  • Chang YL, Oey LY (2011) Loop Current cycle: coupled response of the Loop Current with deep flows. J Phys Oceanogr 41(3):458–471

    Article  Google Scholar 

  • Chang YL, Oey LY (2013) Loop Current growth and eddy shedding using models and observations: numerical process experiments and satellite altimetry data. J Phys Oceanogr 43(3):669–689

    Article  Google Scholar 

  • Chen G, Hu P, Hou Y, Chu X (2011) Intrusion of the Kuroshio into the South China Sea, in September 2008. J Oceanogr 67:439–448

    Google Scholar 

  • Chern CS, Jan S, Wang J (2010) Numerical study of mean flow patterns in the South China Sea and the Luzon Strait. Ocean Dyn 60(5):1047–1059

    Article  Google Scholar 

  • DiMarco SF, Nowlin WD, Reid R (2005) A statistical description of the velocity fields from upper ocean drifters in the Gulf of Mexico. Geophys Monogr Am Geophys Union 161:101

    Google Scholar 

  • Dwi SR, Wei ZX, Rameyo TA, Fan B, Li SJ, Fang GH (2013) Observations of the Karimata Strait througflow from December 2007 to November 2008. Acta Oceanol Sin 32(5):1–6

    Article  Google Scholar 

  • Fang G, Susanto RD, Wirasantosa S, Qiao F, Supangat A, Fan B, Wei Z, Sulistiyo B, Li S (2010) Volume, heat, and freshwater transports from the South China Sea to Indonesian seas in the boreal winter of 2007–2008. J Geophys Res 115, C12020. doi:10.1029/2010JC006225

    Article  Google Scholar 

  • Fang G, Wang G, Fang Y, Fang W (2012) A review on the South China Sea western boundary current. Acta Oceanol Sin 31(5):1–10

    Article  Google Scholar 

  • Gan J, Li H, Curchitser E, Haidvogel D (2006) Modeling South China Sea circulation: response to seasonal forcing regimes. J Geophys Res 111, C06034. doi:10.1029/2005JC003298

    Google Scholar 

  • Hofmann E-E, Worley SJ (1986) An investigation of the circulation of the Gulf of Mexico. J Geophys Res 91:14221–14236

    Article  Google Scholar 

  • Hsin Y, Wu C, Chao S (2012) An updated examination of the Luzon Strait transport. J Geophys Res 117, C03022. doi:10.1029/2011JC007714

    Google Scholar 

  • Isobe A, Isoda Y (1997) Circulation in the Japan Basin, the northern part of the Japan Sea. J Oceanogr 53:373–382

    Google Scholar 

  • Jia YL, Chassignet EP (2011) Seasonal variation of eddy shedding from the Kuroshio intrusion in the Luzon Strait. J Oceanogr 67(5):601–611

    Article  Google Scholar 

  • Lan J, Zhang N, Wang Y (2013) On the dynamics of the South China Sea deep circulation. J Geophys Res 118:1–5. doi:10.1002/jgrc.20104

    Google Scholar 

  • Liang WD, Yang YJ, Tang TY, Chuang WS (2008) Kuroshio in the Luzon Strait. J Geosphys Res 113(C8) doi:10.1029/2007jc004609

  • Liu Z (2002) Observation of volume transport in the Taiwan Strait [D]. National Sun Yat-sen University

  • Metzger EJ, Hurlburt HE (2001) The nondeterministic nature of Kuroshio penetration and eddy shedding in the South China Sea. J Phys Oceanogr 31(7):1712–1732

    Article  Google Scholar 

  • Morimoto A, Yanagi T (2001) Variability of sea surface circulation in the Japan Sea. J Oceanogr 57:1–13

    Article  Google Scholar 

  • Munk WH (1950) On the wind-driven ocean circulation. J Meteorol 7(2):79–93

    Article  Google Scholar 

  • Nan F, Xue H, Chai F, Shi L, Shi M, Guo P (2011a) Identification of different types of kuroshio intrusion into the South China Sea. Ocean Dyn 61(9):1291–1304

    Article  Google Scholar 

  • Nan F, Xue H, **u P, Chai F, Shi M, Guo P (2011b) Oceanic eddy formation and propagation southwest of Taiwan. J Geophys Res 116, C12045. doi:10.1029/2011JC007386

    Article  Google Scholar 

  • Qu TD, Song YT, Yamagata T (2009) An introduction to the South China Sea throughflow: its dynamics, variability, and application for climate. Dyn Atmos Oceans 47:3–14

    Article  Google Scholar 

  • Sheinbaum J, Candela J, Badan A, Ochoa J (2002) Flow structure and transport in the Yucatan Channel. Geophys Res Lett, 29(3): doi:10.1029/2001GL013990

  • Sprintall J, Gordon AL, Flament P, Villanoy CL (2012) Observations of exchange between the South China Sea and the Sulu Sea. J Geophys Res 117, C05036. doi:10.1029/2011jc007610

    Google Scholar 

  • Stommel H (1948) The westward intensification of wind-driven ocean currents. Trans Am Geophys Union 29(2):202–206

    Article  Google Scholar 

  • Sturges W, Kenyon KE (2008) Mean flow in the Gulf of Mexico. J Phys Oceanogr 38(7):1501–1514

    Article  Google Scholar 

  • Takikawa T, Yoon JH, Cho KD (2005) The Tsushima Warm Current through Tsushima Straits estimated from ferryboat ADCP data. J Phys Oceanogr 35(6):1154–1168

    Article  Google Scholar 

  • Tian JW, Yang QX, Liang XF, **e LL, Hu DX., Wang F, Qu TD (2006) Observation of Luzon Strait transport. Geophys Res Lett 33(19): doi:10.1029/2006GL026272

  • Xue H, Chai F, Pettigrew N, Xu D, Shi M, Xu J (2004) Kuroshio intrusion and the circulation in the South China Sea. J Geophys Res 109, C02017. doi:10.1029/2002JC001724

    Google Scholar 

  • Yoon JH (2005) The oceanic circulation of the Japan/East Sea: its resent and furture. The 2nd Joint Japan/Korea Workshop on Marine Environmental Engineering

Download references

Acknowledgments

This work is supported by the “Strategic Priority Research Program” of the Chinese Academy of Sciences (grant XDA11010103), National Natural Science Foundation of China (grant 41106027, 41206008 and 91228202), the Guangzhou City Project for the Pearl River New Star in Science and Technology (grant 2013J2200087) and the Knowledge Innovation Program of the Chinese Academy of Sciences (grant SQ201302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gengxin Chen.

Additional information

Responsible editor: Richard Signell

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, G., Xue, H. Westward intensification in marginal seas. Ocean Dynamics 64, 337–345 (2014). https://doi.org/10.1007/s10236-014-0691-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-014-0691-z

Keyword

Navigation