Log in

Prediction of elementary mathematics grades by cognitive abilities

  • Published:
European Journal of Psychology of Education Aims and scope Submit manuscript

Abstract

In the present study, the relationship between the mathematics grade and the three basic cognitive abilities (inhibition, working memory, and reasoning) was analyzed regarding possible alterations during elementary school. In a sample of N = 244 children, the mathematics grade was best predicted by working memory performance in the second grade and by reasoning in the third and fourth grades. Differentiation of these abilities during elementary school was considered as a cause for this pattern but discarded after the analysis of structural equation models. Thus, with respect to output-orientated curricula, scholastic standards, and a large inter-individual heterogeneity of students, it is implied for teachers to account for different cognitive strengths and weaknesses of their students, using adequate tasks and teaching strategies like self-differentiating tasks and adaptive explorative learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The questions were not related to the number of smiley faces. Exemplary questions are “Did the faces look happy?” and “Did the faces have different sizes?”

  2. The first group contained children between 8 and 9 years of age, the second group children between 9 and 10 years, and the third group children between 10 and 11 years.

References

  • Asch, S. E. (1936). A study of change in mental organization. Archives of Psychology, 28, 1–30.

    Google Scholar 

  • Baddeley, A. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4(11), 417–423.

    Article  Google Scholar 

  • Baumert, J., Lüdtke, O., Trautwein, U., & Brunner, M. (2009). Large-scale student assessment studies measure the results of processes of knowledge acquisition: Evidence in support of the distinction between intelligence and student achievement. Educational Research Review, 4(3), 165–176.

    Article  Google Scholar 

  • Bjorklund, D. F., & Harnishfeger, K. K. (1990). The resources construct in cognitive development: Diverse sources of evidence and a theory of inefficient inhibition. Developmental Review, 10(1), 48–71.

    Article  Google Scholar 

  • Blackwell, L. S., Trzesniewski, K. H., & Dweck, C. S. (2007). Implicit theories of intelligence predict achievement across an adolescent transition: A longitudinal study and an intervention. Child Development, 78(1), 246–263.

    Article  Google Scholar 

  • Blair, C., Gamson, D., Thorne, S., & Baker, D. (2005). Rising mean IQ: Cognitive demand of mathematics education for young children, population exposure to formal schooling, and the neurobiology of the prefrontal cortex. Intelligence, 33(1), 93–106.

    Article  Google Scholar 

  • Blum, W., Galbraith, P., Henn, H.-W., & Niss, M. (Eds.). (2007). Modelling and applications in mathematics education. New York: Springer.

    Google Scholar 

  • BMB – Bundesministerium für Bildung (2014). Lehrplan der Volksschule – Mathematik. Retrieved from www.bmb.gv.at/schulen/unterricht/lp/VS7T_Mathematik_3996.pdf

  • Brunner, M. (2008). No g in education? Learning and Individual Differences, 18(2), 152–165.

    Article  Google Scholar 

  • Brunner, M., Krauss, S., & Kunter, M. (2008). Gender differences in mathematics: Does the story need to be rewritten? Intelligence, 36, 403–421.

  • Bull, R., & Scerif, G. (2001). Executive functioning as a predictor of children’s mathematics ability: Inhibition, switching, and working memory. Developmental Neuropsychology, 19(3), 273–293.

    Article  Google Scholar 

  • Bull, R., Espy, K. A., & Wiebe, S. A. (2008). Short-term memory, working memory, and executive functioning in preschoolers: Longitudinal predictors of mathematical achievement at age 7 years. Developmental Neuropsychology, 33(3), 205–228.

    Article  Google Scholar 

  • CCSSI – Common Core State Standards Initiative (2010). Common core state standards for mathematics. Retrieved from http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf

  • Cerda, G., Ortega, R., Pérez, C., Flores, C., & Melipillán, R. (2011). Inteligencia lógica y rendimiento académico en matemáticas: un estudio con estudiantes de Educación Básica y Secundaria de Chile. Anales de Psycología, Universidad de Murcia, 27(2), 389–398.

    Google Scholar 

  • Clark, C. A., Pritchard, V. E., & Woodward, L. J. (2010). Preschool executive functioning abilities predict early mathematics achievement. Developmental Psychology, 46(5), 1176–1191.

    Article  Google Scholar 

  • Cobb, P., & Jackson, K. (2011). Assessing the quality of the common core state standards for mathematics. Educational Researcher, 40(4), 183–185.

    Article  Google Scholar 

  • Connelly, S. L., Hasher, L., & Zacks, R. T. (1991). Age and reading: The impact of distraction. Psychology and aging, 6(4), 533.

  • Conway, A. R. A., Cowan, N., Bunting, M. F., Therriault, D. J., & Minkoff, S. R. B. (2002). A latent variable analysis of working memory capacity, short-term memory capacity, processing speed, and general fluid intelligence. Intelligence, 30(2), 163–183.

    Article  Google Scholar 

  • Cragg, L., & Gilmore, C. (2014). Skills underlying mathematics: The role of executive function in the development of mathematics proficiency. Trends in Neuroscience and Education, 3(2), 63–68.

    Article  Google Scholar 

  • Crone, E. A., Wendelken, C., Donohue, S., Van Leijenhorst, L., & Bunge, S. A. (2006). Neurocognitive development of the ability to manipulate information in working memory. Proceedings of the National Academy of Sciences, 103(24), 9315–9320.

    Article  Google Scholar 

  • Davidson, M. C., Amso, D., Anderson, L. C., & Diamond, A. (2006). Development of cognitive control and executive functions from 4 to 13 years: Evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia, 44(11), 2037–2078.

    Article  Google Scholar 

  • Deary, I. J., Egan, V., Gibson, G. J., Austin, E. J., Brand, C. R., & Kellaghan, T. (1996). Intelligence and the differentiation hypothesis. Intelligence, 23(2), 105–132.

    Article  Google Scholar 

  • Dempster, F. N., Corkill, A. J., & Jacobi, K. (1995). Individual differences in resistance to interference. In Annual Meeting of the Psychonomic Society, Los Angeles.

  • Der, G., & Deary, I. J. (2003). IQ, reaction time and the differentiation hypothesis. Intelligence, 31(5), 491–503.

    Article  Google Scholar 

  • Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. (1999). Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. Journal of Experimental Psychology: General, 128(3), 309–331.

    Article  Google Scholar 

  • Facon, B. (2006). Does age moderate the effect of IQ on the differentiation of cognitive abilities during childhood? Intelligence, 34(4), 375–386.

    Article  Google Scholar 

  • Filella, J. F. (1960). Educational and sex differences in the organization of abilities in technical and academic students in Colombia, South America. Genetic Psychology Monographs, 61, 115–163.

    Google Scholar 

  • Floyd, R. G., Evans, J. J., & McGrew, K. S. (2003). Relations between measures of Cattell-Horn-Carroll (CHC) cognitive abilities and mathematics achievement across the school-age years. Psychology in the Schools, 40(2), 155–171.

    Article  Google Scholar 

  • Garrett, H. E. (1946). A developmental theory of intelligence. American Psychologist, 1(9), 372–378.

    Article  Google Scholar 

  • Hammer, S., Reiss, K., Lehner, M. C., Heine, J. H., Sälzer, C., & Heinze, A. (2015). Mathematische Kompetenz in PISA 2015: Ergebnisse, Veränderungen und Perspektiven. PISA, 219–248.

  • Heene, M., Hilbert, S., Draxler, C., Ziegler, M., & Bühner, M. (2011). Masking misfit in confirmatory factor analysis by increasing unique variances: A cautionary note on the usefulness of cutoff values of fit indices. Psychological Methods, 16(3), 319.

  • Houdé, O. (2000). Inhibition and cognitive development: Object, number, categorization, and reasoning. Cognitive Development, 15(1), 63–73.

    Article  Google Scholar 

  • Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55.

    Article  Google Scholar 

  • Hülür, G., Wilhelm, O., & Robitzsch, A. (2011). Intelligence differentiation in early childhood. Journal of Individual Differences, 32(3), 170.

  • Hyde, J. S., Fennema, E., & Lamon, S. J. (1990). Gender differences in mathematics performance: A meta-analysis.

  • Johnson, W., Bouchard Jr., T. J., Krueger, R. F., McGue, M., & Gottesman, I. I. (2004). Just one g: Consistent results from three test batteries. Intelligence, 32(1), 95–107.

    Article  Google Scholar 

  • Juan-Espinosa, M., García, L. F., Colom, R., & Abad, F. J. (2000). Testing the age related differentiation hypothesis through the Wechsler’s scales. Personality and Individual Differences, 29(6), 1069–1075.

    Article  Google Scholar 

  • Kelley, K. (2018). MBESS: The MBESS R Package. R package version 4.4.3. https://CRAN.Rproject.org/package=MBESS. Retrieved: June 11th, 2018.

  • KMK – Ständige Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland (Hrsg.) (2004). Bildungsstandards im Fach Mathematik für den Primarbereich. Darmstadt: Luchterhand.

  • Krumm, S., Schmidt-Atzert, L., Bühner, M., Ziegler, M., Michalczyk, K., & Arrow, K. (2009). Storage and non-storage components of working memory predicting reasoning: A simultaneous examination of a wide range of ability factors. Intelligence, 37(4), 347–364.

  • Kunter, M., & Voss, T. (2013). The model of instructional quality in COACTIV: A multicriteria analysis. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.), Cognitive activation in the mathematics classroom and professional competence of teachers. Results from the COACTIV project (pp. 97–124). New York: Springer.

    Chapter  Google Scholar 

  • Kunter, M., Klusmann, U., Baumert, J., Richter, D., Voss, T., & Hachfeld, A. (2013). Professional competence of teachers: Effects on instructional quality and student development. Journal of Educational Psychology, 105(3), 805–820. https://doi.org/10.1037/a0032583.

    Article  Google Scholar 

  • Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is (little more than) working-memory capacity. Intelligence, 14(4), 389–433.

    Article  Google Scholar 

  • Leder, G., & Forgasz, H. (2008). Mathematics education: New perspectives on gender. ZDM, 40(4), 513–518.

    Article  Google Scholar 

  • Leuders, T., Philipp, K., & Leuders, J., (2018). Diagnostic competence of mathematics teachers—unpacking a complex construct in teacher education and teacher practice. Cham: Springer.

  • Limerick, B., Clarke, J., & Daws, L. (1997). Problem-based learning within a post-modern framework: A process for a new generation? Teaching in Higher Education, 2(3), 259–272.

    Article  Google Scholar 

  • MacLeod, C. M. (2007). The concept of inhibition in cognition. In D. S. Gorfein & C. M. MacLeod (Eds.), Inhibition in cognition (pp. 3–23). Washington, DC: American Psychological Association. https://doi.org/10.1037/11587-001

  • Mullis, I. V., Martin, M. O., Foy, P., & Arora, A. (2012). TIMSS 2011 international results in mathematics. International Association for the Evaluation of Educational Achievement. Herengracht 487, Amsterdam, 1017 BT, The Netherlands.

  • O’Grady, K. E. (1990). A confirmatory maximum likelihood factor analysis of the WPPSI. Personality and Individual Differences, 11(2), 135–140.

    Article  Google Scholar 

  • Oberauer, K., Süß, H. M., Wilhelm, O., & Wittman, W. W. (2003). The multiple faces of working memory: Storage, processing, supervision, and coordination. Intelligence, 31(2), 167–193.

    Article  Google Scholar 

  • Passolunghi, M. C., & Siegel, L. S. (2001). Short-term memory, working memory, and inhibitory control in children with difficulties in arithmetic problem solving. Journal of Experimental Child Psychology, 80(1), 44–57.

    Article  Google Scholar 

  • R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/

  • Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches. Learning and Individual Differences, 20(2), 110–122.

    Article  Google Scholar 

  • Ramirez, G., Gunderson, E. A., Levine, S. C., & Beilock, S. L. (2013). Math anxiety, working memory, and math achievement in early elementary school. Journal of Cognition and Development, 14(2), 187–202.

    Article  Google Scholar 

  • Raven, J. C. (1941). Standardization of progressive matrices, 1938. Psychology and Psychotherapy: Theory, Research and Practice, 19(1), 137–150.

  • Raven, J., Raven, J. C., & Court, J. H. (2000). Standard progressive matrices. Oxford: Oxford Psychologists.

    Google Scholar 

  • Rindermann, H. (2007). The g-factor of international cognitive ability comparisons: The homogeneity of results in PISA, TIMSS, PIRLS and IQ-tests across nations. European Journal of Personality, 21(5), 667–706.

    Article  Google Scholar 

  • Rindermann, H. (2008). Relevance of education and intelligence for the political development of nations: Democracy, rule of law and political liberty. Intelligence, 36(4), 306–322.

    Article  Google Scholar 

  • Rohde, T. E., & Thompson, L. A. (2007). Predicting academic achievement with cognitive ability. Intelligence, 35(1), 83–92.

    Article  Google Scholar 

  • Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1–36.

    Article  Google Scholar 

  • Sackett, P. R., & Yang, H. (2000). Correction for range restriction: An expanded typology. Journal of Applied Psychology, 85(1), 112–118.

    Article  Google Scholar 

  • Saß, S., Kampa, N., & Köller, O. (2017). The interplay of g and mathematical abilities in large-scale assessments across grades. Intelligence, 63, 33–44.

    Article  Google Scholar 

  • Saxe, G. B. (2015). Culture and cognitive development: Studies in mathematical understanding. Hillsdale: Lawrence Erlbaum Associates, Inc.

    Book  Google Scholar 

  • Schmid, V. (2010). TEMEKKO (Doctoral dissertation, Ludwig-Maximilians-University of Munich).

  • Selter, C. (2001). Addition and subtraction of three-digit numbers: German elementary children’s success, methods and strategies. Educational Studies in Mathematics, 47(2), 145–173.

    Article  Google Scholar 

  • Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., et al. (2006). Intellectual ability and cortical development in children and adolescents. Nature, 30, 676–679.

    Article  Google Scholar 

  • Siegel, L. S., & Ryan, E. B. (1989). The development of working memory in normally achieving and subtypes of learning disabled children. Child Development, 60(4), 973–980.

    Article  Google Scholar 

  • Spearman, C. (1926). Some issues in the theory of “G” (including the law of diminishing returns). Paper presented at the British Association Section J-Psychology, Southampton.

  • Spinath, B., Spinath, F. M., Harlaar, N., & Plomin, R. (2006). Predicting school achievement from general cognitive ability, self-perceived ability, and intrinsic value. Intelligence, 34(4), 363–374.

    Article  Google Scholar 

  • Stamovlasis, D., & Tsaparlis, G. (2005). Cognitive variables in problem solving: A nonlinear approach. International Journal of Science and Mathematics Education, 3(1), 7–32.

    Article  Google Scholar 

  • Stanovich, K. E., Cunningham, A. E., & Feeman, D. J. (1984). Intelligence, cognitive skills, and early reading progress. Reading Research Quarterly, 19(3), 278–303.

    Article  Google Scholar 

  • Tartre, L. A., & Fennema, E. (1995). Mathematics achievement and gender: A longitudinal study of selected cognitive and affective variables [grades 6–12]. Educational Studies in Mathematics, 28(3), 199–217.

    Article  Google Scholar 

  • Tideman, E., & Gustafsson, J. E. (2004). Age-related differentiation of cognitive abilities in ages 3-7. Personality and Individual Differences, 36(8), 1965–1974.

    Article  Google Scholar 

  • Tucker-Drob, E. M. (2009). Differentiation of cognitive abilities across the life span. Developmental psychology, 45(4), 1097.

  • Van Dooren, W., & Inglis, M. (2015a). Inhibitory control in mathematical thinking, learning and problem solving. ZDM, 47(5).

  • Van Dooren, W., & Inglis, M. (2015b). Inhibitory control in mathematical thinking, learning and problem solving: A survey. ZDM, 47(5), 713–721.

    Article  Google Scholar 

  • Wilson, K. M., & Swanson, H. L. (2001). Are mathematics disabilities due to a domain-general or a domain-specific working memory deficit? Journal of Learning Disabilities, 34(3), 237–248.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Hilbert.

Additional information

Prof. Dr. Sven Hilbert. Faculty of Psychology, Educational Science, and Sport Science, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany. E-mail: sven.hilbert@ur.de. Tel: +49 (0) 941/943–7444

Current themes of research:

Learning in mathematics. Multi-level modeling for longitudinal data. Working memory strategies and training.

Most relevant publications in the field of Psychology of Education:

Binder, K., Krauss, S., Hilbert, S., Brunner, M., Anders, Y. & Kunter, M. (2018). Diagnostic Skills of Mathematics Teachers in the COACTIV study. In T. Leuders, K. Philipp & J. Leuders (Eds.) Diagnostic Competence of Mathematics Teachers—Unpacking a complex construct in teacher education and teacher practice (pp. 33–53). Cham: Springer.

Hilbert, S., Schwaighofer, M., Sarubin, N., Zech., A. & Bühner, M. (2017). Working memory tasks train working memory but not reasoning: A material- and operation-specific investigation of transfer from working memory practice. Intelligence, 61, 102–114.

Hilbert, S., Nakagawa, T. T., Puci, P., Zech, A. & Bühner, M. (2015). The Digit Span Backwards Task: Verbal and Visual Cognitive Strategies in Working Memory Assessment. European Journal of Psychological Assessment, 31(3), 174–180.

Dr. Georg Bruckmaier. Faculty of Mathematics, Department of Mathematics Education, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany. E-mail: georg.bruckmaier@ur.de. Tel: +49 (0) 941/943–2786

Current themes of research:

Mathematics education. Pedagogical content knowledge. Probability and eye tracking.

Most relevant publications in the field of Psychology of Education:

Binder, K., Krauss, S., & Bruckmaier, G. (2015). Effects of visualizing statistical information—An empirical study on tree diagrams and 2 x 2 tables. Frontiers in Psychology, 6(1186).

Bruckmaier, G., Krauss, S., Blum, W., & Leiss, D. (2016). Measuring mathematical teachers’ professional competence by using video clips (COACTIV video). ZDMThe International Journal on Mathematics Education, 48(1-2). doi: 10.1007/s11858-016-0772-1 (online first).

Schmeisser, C., Krauss, S., Bruckmaier, G., Ufer, S. & Blum, W. (2013). Transmissive and Constructivist Beliefs of In-Service Mathematics Teachers and of Beginning University Students. In Y. Li & J. N. Moschkovich (Eds.), Proficiency and beliefs in learning and teaching mathematics. Learning from Alan Schoenfeld and Günter Törner. Mathematics teaching and learning, 3 (pp. 51–68). Rotterdam: Sense.

Dipl.-Phys. Karin Binder. Faculty of Mathematics, Department of Mathematics Education, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany. E-mail: karin.binder@ur.de. Tel: +49 (0) 941/943–2786

Current themes of research:

Mathematics education. Diagnostic competence (COACTIV and medicine). Probability and Bayesian reasoning.

Most relevant publications in the field of Psychology of Education:

Binder, K., Krauss, S., Hilbert, S., Brunner, M., Anders, Y. & Kunter, M. (2018). Diagnostic Skills of Mathematics Teachers in the COACTIV study. In T. Leuders, K. Philipp & J. Leuders (Eds.) Diagnostic Competence of Mathematics Teachers—Unpacking a complex construct in teacher education and teacher practice (pp. 33–53). Cham: Springer.

Binder, K., Krauss, S., & Bruckmaier, G. (2015). Effects of visualizing statistical information—An empirical study on tree diagrams and 2 x 2 tables. Frontiers in Psychology, 6(1186).

Binder, K., Krauss, S., Bruckmaier, G. & Marienhagen, J. (under review). Visualizing the Bayesian 2-test case: The effect of tree diagrams on medical decision making. PLoS One.

Prof. Dr. Stefan Krauss. Faculty of Mathematics, Department of Mathematics Education, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany. E-mail: stefan1.krauss@ur.de. Tel: +49 (0) 941/943–2788

Current themes of research:

Teaching and learning. Probability education. Professional knowledge of teachers (COACTIV and FALKO studies)

Most relevant publications in the field of Psychology of Education:

Krauss, S., Brunner, M., Kunter, M., Baumert, J., Blum, W., Neubrand, M., & Jordan, A. (2008). Pedagogical content knowledge and content knowledge of secondary mathematics teachers. Journal of Educational Psychology, 100(3), 716–725.

Brunner, M., Krauss, S., & Kunter, M. (2008). Gender differences in mathematics: Does the story need to be rewritten? Intelligence, 36, 403–421.

Krauss, S., & Bruckmaier, G. (2014). Das Experten-Paradigma in der Forschung zum Lehrerberuf. In E. Terhart, H. Bennewitz & M. Rothland (Hrsg.), Handbuch der Forschung zum Lehrerberuf (2. Aufl.) (S. 241–261). Münster: Waxmann.

Prof. Dr. Markus Bühner. Department of Psychology, Psychological Methods and Assessment, LMU Munich, Leopoldstraße 13, 80802 Munich, Germany. E-mail: buehner@psy.lmu.de. Tel: +49 (0) 89/2180–6257

Current themes of research:

Behavioral data science. Working memory and intelligence. Structural equation models

Most relevant publications in the field of Psychology of Education:

Schwaighofer, M., Bühner, M., & Fischer, F. (2017). Executive functions in the context of complex learning: Malleable moderators?. Frontline Learning Research, 5(1), 58–75.

Zihl J., Fink T., Pargent F., Ziegler M., Bühner M. (2014). Cognitive Reserve in Young and Old Healthy Subjects: Differences and Similarities in a Testing-the-Limits Paradigm with DSST. PLoS One 9(1): e84590.

Krumm, S., Bühner, M. & Ziegler, M. (2008). Intelligence and working memory as predictors of school performance. Learning and Individual Differences, 18 (2), 248–257.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hilbert, S., Bruckmaier, G., Binder, K. et al. Prediction of elementary mathematics grades by cognitive abilities. Eur J Psychol Educ 34, 665–683 (2019). https://doi.org/10.1007/s10212-018-0394-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10212-018-0394-9

Keywords

Navigation