Log in

The effect of micro-SiO2 and micro-Al2O3 additive on the strength properties of ceramic powder-based geopolymer pastes

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

In this study, the effect of micro-SiO2 (S) and micro-Al2O3 (A) additives on the strength of geopolymer pastes was investigated. Micro S + A are added to the raw ceramic powder (CP) by weight. NaOH is used as activator. The ratio of NaOH is adjusted to contain 3%, 6% and 9% sodium (Na) in proportion to the binder weight. CP is mixed with micro S, micro A and NaOH + water in a standard cement mixer, it is placed in standard molds of 40 mm × 40 mm × 160 mm. The molds were wrapped in a fireproof oven bag and kept in the oven at 105 °C for 24 h. As a result of the mechanical tests on the samples compressive strength between 3.53 and 17.97 MPa were determined in the samples containing micro S and micro A. An increase in compressive strength was observed with the increase of S/A and (S + A)/CP ratio in the samples. As a result of the regression analysis, it was concluded that 1.60% for S/A, 8.52% for (S + A)/CP and 6.74% for Na in geopolymer pastes could be the optimum mixing ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Shi C, Jiménez FA, Palomo A (2011) New cements for the 21st century: the pursuit of an alternative to Portland cement. Cem Concr Res 41:750–763. https://doi.org/10.1016/j.cemconres.2011.03.016

    Article  Google Scholar 

  2. García-Lodeiro I, Palomo A, Fernández-Jiménez A (2014) An overview of the chemistry of alkali-activated cement-based binders. In: Pacheco-Torgal F, Labrincha J, Leonelli C, Palomo A, Chindaprasit P (eds) Handbook of alkali-activated cements, mortars and concretes, 1st edn. Cambridge, Woodhead Publishing, pp 19–47

    Google Scholar 

  3. Davidovits J (2008) Geopolymer chemistry and applications. Institute Geopolymere, Saint-Quentin

    Google Scholar 

  4. Du K, **e C, Ouyang X (2017) A comparison of carbon dioxide (CO2) emission trendsamong provinces in China. Renew Sustain Energy Rev 73:19–25. https://doi.org/10.1016/j.rser.2017.01.102

    Article  Google Scholar 

  5. Huseien GF, Mirza J, Ismail M, Ghoshal SK, Hussein AA (2017) Geopolymer mortars as sustainable repair material: a comprehensive review. Renew Sustain Energy Rev 80:54–74. https://doi.org/10.1016/j.rser.2017.05.076

    Article  Google Scholar 

  6. Moni SFK, Ikeora O, Pritzel C, Görtz B, Trettin R (2020) Preparation and properties of fly ash-based geopolymer concrete with alkaline waste water obtained from foundry sand regeneration process. J Mater Cycles Waste Manag 22(5):1434–1443

    Article  Google Scholar 

  7. Ismail I, Bernal SA, Provis JL, Nicolas RS, Hamdan S, Deventer JSJ (2014) Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cem Concr Compos 45:125–135. https://doi.org/10.1016/j.cemconcomp.2013.09.006

    Article  Google Scholar 

  8. van Deventer JSJ, Provis JL, Duxson P, Lukey GC (2007) Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. J Hazard Mater 139(3):506–513. https://doi.org/10.1016/j.jhazmat.2006.09.033

    Article  Google Scholar 

  9. Atis CD, Gorur EB, Karahan O, Bilim C, Ilkentapar S, Luga E (2015) Very high strength (120 MPa) class F fly ash geopolymer mortar activated at different NaOH amount, heat curing temperature and heat curing duration. Constr Build Mater 96:673–678. https://doi.org/10.1016/j.conbuildmat.2015.08.089

    Article  Google Scholar 

  10. Kaya M, Uysal M, Yılmaz K, Atiş CD (2018) Behaviour of geopolymer mortars after exposure to elevated temperatures. Mater Sci (Medziagotyra) 24(4):428–436. https://doi.org/10.5755/j01.ms.24.4.18829

    Article  Google Scholar 

  11. Atabey İİ, Karahan O, Bilim C, Atiş CD (2020) The influence of activator type and quantity on the transport properties of class F fly ash geopolymer. Constr Build Mater 264:120268. https://doi.org/10.1016/j.conbuildmat.2020.120268

    Article  Google Scholar 

  12. Lahoti M, Tan KH, Yang EH (2019) A critical review of geopolymer properties for structural fire-resistance applications. Constr Build Mater 221:514–526. https://doi.org/10.1016/j.conbuildmat.2019.06.076

    Article  Google Scholar 

  13. Chen S, Zhang Y, Yan D, ** J, Tian Y, Liu Y, Qian X, Peng Y, Fujitsu S (2020) The influence of Si/Al ratio on sulfate durability of metakaolin-based geopolymer. Constr Build Mater 265:120735. https://doi.org/10.1016/j.conbuildmat.2020.120735

    Article  Google Scholar 

  14. Zhuanga HJ, Zhanga HY, Xua H (2017) Resistance of geopolymer mortar to acid and chloride attacks. Procedia Eng 210:126–131

    Article  Google Scholar 

  15. Atabey İİ, Karahan O, Bilim C, Atiş CD (2020) Very high strength Na2SiO3 and NaOH activated fly ash based geopolymer mortar. Cement Wapno Beton 25:292–305. https://doi.org/10.32047/CWB.2020.25.4.4

    Article  Google Scholar 

  16. Schabbach LM, Andreola F, Barbieri L, Lancellotti I, Karamanova E, Ranguelov B, Karamanov A (2012) A post-treated incinerator bottom ash as alternativeraw material for ceramic manufacturing. J Eur Ceram Soc 32:2843–2852. https://doi.org/10.1016/j.jeurceramsoc.2012.01.020

    Article  Google Scholar 

  17. Reiga L, Sanzb MA, Borracherob MV, Monzób J, Sorianob L, Payáb J (2017) Compressive strength and microstructure of alkali-activated mortars with high ceramic waste content. Ceram Intern 43:13622–13634. https://doi.org/10.1016/j.ceramint.2017.07.072

    Article  Google Scholar 

  18. Villaquirán-Caicedo MA, Mejía de Gutiérrez R (2018) Synthesis of ceramic materials from ecofriendly geopolymer precursors. Mater Lett 230:300–304. https://doi.org/10.1016/j.matlet.2018.07.128

    Article  Google Scholar 

  19. Shah KW, Huseien GF (2020) Bond strength performance of ceramic, fly ash and GBFS ternary wastes combined alkali-activated mortars exposed to aggressive environments. Constr Build Mater 251:119088. https://doi.org/10.1016/j.conbuildmat.2020.119088

    Article  Google Scholar 

  20. Keppert M, Vejmelková E, Bezdička P, Doleželová M, Černý R (2018) Red-clay ceramic powders as geopolymer precursors: consideration of amorphous portion and CaO content. Appl Clay Sci 161:82–89. https://doi.org/10.1016/j.clay.2018.04.019

    Article  Google Scholar 

  21. Luo Y, Maa S, Liu C, Zhao Z, Zheng S, Wang X (2017) Effect of particle size and alkali activation on coal fly ash and their role in sintered ceramic tiles. J Eur Ceram Soc 37(2017):1847–1856. https://doi.org/10.1016/j.jeurceramsoc.2016.11.032

    Article  Google Scholar 

  22. Senthamarai RM, Devadas P, Manoharan PD, Gobinath D (2011) Concrete made from ceramic industry waste: durability properties. Constr Build Mater 25:2413–2419. https://doi.org/10.1016/j.conbuildmat.2010.11.049

    Article  Google Scholar 

  23. Yun-Ming L, Cheng-Yong H, Al Bakri MM, Hussin K (2016) Structure and properties of clay-based geopolymer cements: a review. Prog Mater Sci 83:595–629. https://doi.org/10.1016/j.pmatsci.2016.08.002

    Article  Google Scholar 

  24. Zhang ZH, Zhu HJ, Zhou CH, Wang H (2015) Geopolymer from Kaolin in China: an overview. Appl Clay Sci 119:31–41. https://doi.org/10.1016/j.clay.2015.04.02310

    Article  Google Scholar 

  25. Soutsos M, Boyle AP, Vinai R, Hadjierakleous A, Barnett SJ (2016) Factors ınfluencing the compressive strength of fly ash based geopolymers. Constr Build Mater 110:355–368. https://doi.org/10.1016/j.conbuildmat.2015.11.045

    Article  Google Scholar 

  26. Komljenovic M, Bascarivic Z, Bradic V (2010) Mechanical and microstructural properties of alkali-activated fly ash geopolymers. J Hazard Mater 181:35–42. https://doi.org/10.1016/j.jhazmat.2010.04.064

    Article  Google Scholar 

  27. He PG, Wang MR, Fu S, Jia DC, Yan S, Yuan JK, Xu JH, Wang PF, Zhou Y (2016) Effects of Si/Al ratio on the structure and properties of metakaolin based geopolymer. Ceram Int 42:14416–14422. https://doi.org/10.1016/j.ceramint.2016.06.033

    Article  Google Scholar 

  28. Autef A, Joussein E, Gasgnier G, Rossignol S (2012) Role of the silica source on the geopolymerization rate. J Non-Cryst Solids 358:2886–2893. https://doi.org/10.1016/j.jnoncrysol.2012.07.015

    Article  Google Scholar 

  29. Fletcher RA, MacKenzie KJD, Nicholson CL, Shimada S (2005) The composition range of aluminosilicate geopolymers. J Eur Ceram Soc 25:1471–1477. https://doi.org/10.1016/j.jeurceramsoc.2004.06.001

    Article  Google Scholar 

  30. Reig L, Tashima MM, Borrachero MV, Monzo J, Cheeseman CR, Paya J (2013) Properties and microstructure of alkali-activated red clay brick waste. Constr Build Mater 43:98–106. https://doi.org/10.1016/j.conbuildmat.2013.01.031

    Article  Google Scholar 

  31. Yehualaw MD, Hwang CL, Vo DH, Koyenga A (2021) Effect of alkali activator concentration on waste brick powder-based ecofriendly mortar cured at ambient temperature. J Mater Cycles Waste Manag 23(2):727–740. https://doi.org/10.1007/s10163-020-01164-6

    Article  Google Scholar 

  32. Mahmoodi O, Siad H, Lachemi M, Dadsetan S, Sahmaran M (2020) Development of ceramic tile waste geopolymer binders based on pre-targeted chemical ratios and ambient curing. Constr Build Mater 258:120297. https://doi.org/10.1016/j.conbuildmat.2020.120297

    Article  Google Scholar 

  33. Khater HM (2016) Effect of nano-silica on microstructure formation of low-cost geopolymer binder. Nanocomposites 2:84–97. https://doi.org/10.1080/20550324.2016.1203515

    Article  Google Scholar 

  34. Assaedi H, Shaikh FUA, Low IM (2016) Influence of mixing methods of nano silicaon the microstructural and mechanical properties of flax fabric reinforced geopolymer composites. Constr Build Mater 123:541–552. https://doi.org/10.1016/j.conbuildmat.2016.07.049

    Article  Google Scholar 

  35. Wang R, Wang J, Dong T, Ouyang G (2020) Structural and mechanical properties of geopolymers made of aluminosilicate powder with different SiO2/Al2O3 ratio: molecular dynamics simulation and microstructural experimental study. Constr Build Mater 240:117935. https://doi.org/10.1016/j.conbuildmat.2019.117935

    Article  Google Scholar 

  36. Zhanga P, Wanga K, Juan W, Guoa J, Hua S, Ling Y (2020) Mechanical properties and prediction of fracture parameters of geopolymer/alkali-activated mortar modified with PVA fiber and nano-SiO2. Ceram Int 46:20027–20037. https://doi.org/10.1016/j.ceramint.2020.05.074

    Article  Google Scholar 

  37. Lo KW, Lin KL, Cheng TW, Chang YM, Lan JY (2017) Effect of nano-SiO2 on the alkali-activated characteristics of spent catalyst metakaolin-based geopolymers. Constr Build Mater 143:455–463. https://doi.org/10.1016/j.conbuildmat.2017.03.152

    Article  Google Scholar 

  38. Juengsuwattananon K, Winnefeld F, Chindaprasirt P, Pimraksa K (2019) Correlation between initial SiO2/Al2O3, Na2O/Al2O3, Na2O/SiO2 and H2O/Na2O ratios on phase and microstructure of reaction products of metakaolin-rice husk ash geopolymer. Constr Build Mater 226:406–417. https://doi.org/10.1016/j.conbuildmat.2019.07.146

    Article  Google Scholar 

  39. Deb PS, Sarker PK, Barbhuiya S (2015) Effects of nano-silica on the strength development of geopolymer cured at room temperature. Constr Build Mater 101(1):675–683. https://doi.org/10.1016/j.conbuildmat.2015.10.044

    Article  Google Scholar 

  40. Kränzlein E, Harmel J, Pöllmann H, Krcmar W (2019) Influence of the Si/Al ratio in geopolymers on the stability against acidic attack and the immobilization of Pb2+ and Zn2+. Constr Build Mater 227:116634. https://doi.org/10.1016/j.conbuildmat.2019.08.015

    Article  Google Scholar 

  41. Alomayri T (2019) Experimental study of the microstructural and mechanical properties of geopolymer paste with nano material (Al2O3). J Build Eng. https://doi.org/10.1016/j.jobe.2019.100788

    Article  Google Scholar 

  42. Phoo-ngernkham T, Chindaprasirt P, Sata V, Hanjitsuwan S, Hatanaka S (2014) The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured at ambient temperature. Mater Des 55:58–65. https://doi.org/10.1016/j.matdes.2013.09.049

    Article  Google Scholar 

  43. Lemougna PN, Chinje Melo UF, Delplancke MP, Rahier H (2014) Influence of the chemicaland mineralogical composition on the reactivity of volcanic ashes during alkali activation. Ceram Int 40(1):811–820. https://doi.org/10.1016/j.ceramint.2013.06.072

    Article  Google Scholar 

  44. Fernández-Jiménez A, de la Torre AG, Palomo A, López-Olmo G, Alonso MM, Aranda MAG (2006) Quantitative determination of phases in the alkaline activation of fly ash. Part II: degree of reaction. Fuel 85:1960–1969. https://doi.org/10.1016/j.fuel.2006.04.006

    Article  Google Scholar 

  45. Ruiz-Santaquiteria C, Fernández-Jiménez A, Skibsted J, Palomo A (2013) Clay reactivity: production of alkali activated cements. Appl Clay Sci 73:11–16. https://doi.org/10.1016/j.clay.2012.10.012

    Article  Google Scholar 

  46. Bumanisa G, Vitolaa L, Bajarea D, Dembovskaa L, Pundiene I (2017) Impact of reactive SiO2/Al2O3 ratio in precursor on durability of porous alkali activated materials. Ceram Int 43(7):5471–5477. https://doi.org/10.1016/j.ceramint.2017.01.060

    Article  Google Scholar 

  47. Duan P, Yan C, Zhou W (2017) Compressive strength and microstructure of fly ash based geopolymer blended with silica fume under thermal cycle. Cem Conc Comp 78:108–119. https://doi.org/10.1016/j.cemconcomp.2017.01.009

    Article  Google Scholar 

  48. Bajpai R, Choudhary K, Srivastava A, Sangwan KS, Singh M (2020) Environmental impact assessment of fly ash and silica fume based geopolymer concrete. J Clean Prod 254:120147. https://doi.org/10.1016/j.jclepro.2020.120147

    Article  Google Scholar 

  49. Shahmansouri AA, Yazdani M, Ghanbari S, Bengar HA, Jafari A, Ghatte HF (2021) Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite. J Clean Prod 279:123697. https://doi.org/10.1016/j.jclepro.2020.123697

    Article  Google Scholar 

  50. Rao AK, Kumar DR (2020) Comparative study on the behaviour of GPC using silica fume and fly ash with GGBS exposed to elevated temperature and ambient curing conditions. Mater Today: Proc 27:1833–1837. https://doi.org/10.1016/j.matpr.2020.03.789

    Article  Google Scholar 

  51. Mohabbi M (2020) Nano silica and micro silica effect on mechanical attributes of ferrochrome slag based geopolymer. Düzce Univ J Sci Technol 8:347–362. https://doi.org/10.29130/dubited.587321

    Article  Google Scholar 

  52. Kaya M (2021) The effect of silica fume and micro SiO2 additive on the strength properties in kaolin based geopolymer mortars. Niğde Ömer Halisdemir Univ J Eng Sci. https://doi.org/10.28948/ngumuh.886863

    Article  Google Scholar 

  53. Yaşın S, Ahlatcı H (2019) Thermal investigation of fine alumina powder reinforced Na-metakaolin-based geopolymer binder for refractory applications. J Aust Ceram Soc 55:587–593. https://doi.org/10.1007/s41779-018-0266-4

    Article  Google Scholar 

  54. Keawpapasson P, Tippayasam C, Ruangjan S, Thavorniti P, Panyathanmaporn T, Fontaine A, Leonelli C, Chaysuwan D (2014) Metakaolin-based porous geopolymer with aluminium powder. In: Key engineering materials, Vol 608, Trans Tech Publications Ltd, pp 132–138. https://doi.org/10.4028/www.scientific.net/KEM.608.132

  55. Biswas RK, Khan P, Mukherjee S, Mukhopadhyay AK, Ghosh J, Muraleedharan K (2018) Study of short range structure of amorphous Silica from PDF using Ag radiation in laboratory XRD system, RAMAN and NEXAFS. J Non-Crys Sol 488:1–9. https://doi.org/10.1016/j.jnoncrysol.2018.02.037

    Article  Google Scholar 

  56. Kouamo HT, Elimbi A, Mbey JA, Sabouang CN, Njopwouo D (2012) The effect of adding alumina-oxide to metakaolin and volcanic ash on geopolymer products: a comparative study. Const Build Mater 35:960–969. https://doi.org/10.1016/j.conbuildmat.2012.04.023

    Article  Google Scholar 

  57. Kaya M, Uysal M, Yilmaz K, Karahan O, Atiş CD (2020) Mechanical properties of class C and F fly ash geopolymer mortars. Gradevinar 72(4):297–309. https://doi.org/10.14256/JCE.2421.2018

    Article  Google Scholar 

  58. Kaya M, Köksal F (2021) Effect of cement additive on physical and mechanical properties of high calcium fly ash geopolymer mortars. Struct Concr 22(1):E452–E465. https://doi.org/10.1002/suco.202000235

    Article  Google Scholar 

  59. Çelikten S (2021) Mechanical and microstructural properties of waste andesite dust-based geopolymer mortars. Adv Powd Technol 32(1):1–9. https://doi.org/10.1016/j.apt.2020.10.011

    Article  Google Scholar 

  60. Wang Y, Nowack B (2018) Environmental risk assessment of engineered nano-SiO2, nano iron oxides, nano-CeO2, nano-Al2O3, and quantum dots. Environ Toxicol Chem 37(5):1387–1395. https://doi.org/10.1002/etc.4080

    Article  Google Scholar 

  61. Helmy AII (2016) Intermittent curing of fly ash geopolymer mortar. Constr Build Mater 110:54–64. https://doi.org/10.1016/j.conbuildmat.2016.02.007

    Article  Google Scholar 

  62. Rashad AM, Bai Y, Basheer PAM, Milestone NB, Collier NC (2013) Hydration and properties of sodium sulfate activated slag. Cem Concr Compos 37:20–29. https://doi.org/10.1016/j.cemconcomp.2012.12.010

    Article  Google Scholar 

  63. ASTM C642-13. Standard test method for density, absorption, and voids in hardened concrete

  64. EN 12504-4 (2012) Concrete tests-part 4: determination of ultrasonic pulsed wave velocity. Turkish Standards Institution, Ankara

    Google Scholar 

  65. EN 1015-11 (2013) Methods of test for mortar for masonry-Part 11: determination of flexural and compressive strength of hardened mortar. Turkish Standards Institution, Ankara

    Google Scholar 

  66. Amin SK, El-Sherbiny SA, Abo El-Magd AAM, Belal A, Abadir MF (2017) Fabrication of geopolymer bricks using ceramic dust waste. Constr Build Mater 157:610–620. https://doi.org/10.1016/j.conbuildmat.2017.09.052

    Article  Google Scholar 

  67. Huseien G, Sam ARM, Shah KW, Asaad MA, Tahir MM, Mirza J (2019) Properties of ceramic tile waste based alkali-activated mortars incorporating GBFS and fly ash. Constr Build Mater 214:355–368. https://doi.org/10.1016/j.conbuildmat.2019.04.154

    Article  Google Scholar 

  68. Zidi Z, Ltifi M, Zafar I (2021) Synthesis and attributes of nano-SiO2 local metakaolin based-geopolymer. J Build Eng 33:101586. https://doi.org/10.1016/j.jobe.2020.101586

    Article  Google Scholar 

  69. Hwang CL, Yehualaw MD, Vo DH, Huynh TP (2019) Development of high-strength alkali-activated pastes containing high volumes of waste brick and ceramic powders. Constr Build Mater 218:519–529. https://doi.org/10.1016/j.conbuildmat.2019.05.143

    Article  Google Scholar 

  70. Huseien GF, Sam ARM, Shah KW, Mirza J (2020) Effects of ceramic tile powder waste on properties of self-compacted alkali-activated concrete. Constr Build Mater 236:117574. https://doi.org/10.1016/j.conbuildmat.2019.117574

    Article  Google Scholar 

  71. Durak U, Karahan O, Uzal B, Ilkentapar S, Atis CD (2021) Influence of nano SiO2 and nano CaCO3 particles on strength, workability, and microstructural properties of fly ash-based geopolymer. Struct Concr 22(1):E352–E367. https://doi.org/10.1002/suco.201900479

    Article  Google Scholar 

  72. Kubba Z, Huseien GF, Sam ARM, Shah KW, Asad MA, İsmail M, Md. Tahir M, Mirza J (2018) Impact of curing temperatures and alkaline activators on compressive strength and porosity of ternary blended geopolymer mortars. Case Stud Constr Mater 9:e00205. https://doi.org/10.1016/j.cscm.2018.e00205

    Article  Google Scholar 

  73. Lee WH, Wang JH, Ding YC, Cheng TW (2019) A study on the characteristics and microstructures of GGBS/FA based geopolymer paste and concrete. Constr Build Mater 211:807–813. https://doi.org/10.1016/j.conbuildmat.2019.03.291

    Article  Google Scholar 

  74. Kepperta M, Vejmelkováa E, Bezdička P, Doleželováa M, Monika Č, La S, Pokornýa J et al (2018) Red-clay ceramic powders as geopolymer precursors: consideration of amorphous portion and CaO content. Appl Clay Sci 161:82–89. https://doi.org/10.1016/j.clay.2018.04.019

    Article  Google Scholar 

  75. De Silva P, Sagoe-Crenstil K, Sirivivatnanon V (2007) Kinetics of geopolymerization: role of Al2O3 and SiO2. Cement Concr Res 37:512–518. https://doi.org/10.1016/j.cemconres.2007.01.003

    Article  Google Scholar 

  76. Duxson P, Mallicoat S, Lukey GC, Kriven WM, van Deventer JSJ (2007) The effect of alkali and Si/Al ratio on the development of mechanical properties ofmetakaolin-based geopolymers. Colloid Surf Physicochem Eng Aspect 292:8–20. https://doi.org/10.1016/j.colsurfa.2006.05.044

    Article  Google Scholar 

  77. Sarkar M, Dana K (2021) Partial replacement of metakaolin with red ceramic waste in geopolymer. Ceram Int 47(3):3473–3483. https://doi.org/10.1016/j.ceramint.2020.09.191

    Article  Google Scholar 

  78. Chindaprasirt P, De Silva P, Sagoe-Crenstil K, Hanjitsuwan S (2012) Effect of SiO2 andAl2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems. J Mater Sci 47:4876–4883. https://doi.org/10.1007/s10853-012-6353-y

    Article  Google Scholar 

  79. Lo KW, Lin KL, Cheng TW, Chang YM, Lan JY (2017) Effect of nano-SiO2on the alkali-activated characteristics of spentcatalyst metakaolin-based geopolymers. Constr Build Mater 143:455–463. https://doi.org/10.1016/j.conbuildmat.2017.03.152

    Article  Google Scholar 

  80. Duxson P, Provis JL (2008) Designing precursors for geopolymer cements. J Am Ceram Soc 91:3864–3869. https://doi.org/10.1111/j.1551-2916.2008.02787.x

    Article  Google Scholar 

  81. Weng L, Sagoe CK, Brown T, Song S (2005) Effects of aluminates on the formation of geopolymers. Mater Sci Eng 117:163–168. https://doi.org/10.1016/j.mseb.2004.11.008

    Article  Google Scholar 

  82. Xu H, Deventer JSJ (2000) The geo-polymerisation of alumino-silicate minerals. Int J Miner Process 59:247–266. https://doi.org/10.1016/S0301-7516(99)00074-5

    Article  Google Scholar 

  83. Duxson P, Provis JL, Lukeya GC, Mallicoat SW, Kriven WM, Deventer JSJ (2005) Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloid Surf A Physicochem Eng Asp 269:47–58

    Article  Google Scholar 

  84. Fernández-Jiménez A, Palomo A, Sobrados I, Sanz J (2006) The role played by thereactive alumina content in the alkaline activation of fly ashes. Microporous Mesoporous Mater 91:111–119. https://doi.org/10.1016/j.micromeso.2005.11.015

    Article  Google Scholar 

  85. Zidi Z, Ltifi M, Ben Ayadi Z, Mir LE (2019) Synthesis of nano-alumina and their effect on structure, mechanical and thermal properties of geopolymer. J Asian Ceram Soc 7(4):524–535. https://doi.org/10.1080/21870764.2019.1676498

    Article  Google Scholar 

  86. Missoum S, Kacimi L, Kaci A (2021) Elaboration of geopolymer binder from pharmaceutical glass waste and optimization of its synthesis parameters. J Mater Cycles Waste Manag 23(3):1201–1218. https://doi.org/10.1007/s10163-021-01213-8

    Article  Google Scholar 

  87. Al-mashhadani MM, Canpolat O, Aygörmez Y, Uysal M, Erdem S (2018) Mechanical and microstructural characterization of fiber reinforced fly ash based geopolymer composites. Constr Build Mater 167:505–513. https://doi.org/10.1016/j.conbuildmat.2018.02.061

    Article  Google Scholar 

  88. Omer SA, Demirboga R, Khushefat WH (2015) Relationship between compressive strength and UPV of GGBFS basedgeopolymer mortars exposed to elevated temperatures. Constr Build Mater 94:189–195. https://doi.org/10.1016/j.conbuildmat.2015.07.006

    Article  Google Scholar 

  89. Chindaprasirt P, Thaiwitcharoen S, Kaewpirom S, Rattanasak U (2013) Controlling ettringite formation in FBC fly ash geopolymer concrete. Cem Concr Compos 41:24–32. https://doi.org/10.1016/j.cemconcomp.2013.04.009

    Article  Google Scholar 

  90. Bin Mohamed Rashid MR, Mijarsh MJA, Seli H, Johari MAM, Ahmad ZA (2018) Sago pith waste ash as a potential raw material for ceramic and geopolymer fabrication. J Mater Cycles Waste Manag 20(2):1090–1098. https://doi.org/10.1007/s10163-017-0672-7

    Article  Google Scholar 

  91. Han Y, **a J, Chang H, Xu J (2021) The influence mechanism of ettringite crystals and microstructure characteristics on the strength of calcium-based stabilized soil. Materials 14(6):1359. https://doi.org/10.3390/ma14061359

    Article  Google Scholar 

  92. Treacy MM, Higgins JB (2001) Collection of simulated XRD powder patterns for zeolites. Elsevier, Amsterdam

    Google Scholar 

  93. Qiu J, Zhao Y, **n J, Sun X (2019) Fly ash/blast furnace slag-based geopolymer as a potential binder for mine backfilling: effect of binder type and activator concentration. Adv Mater Sci Eng. https://doi.org/10.1155/2019/2028109

    Article  Google Scholar 

  94. Xu LY, Alrefaei Y, Wang YS, Dai JG (2021) Recent advances in molecular dynamics simulation of the NASH geopolymer system: modeling, structural analysis, and dynamics. Constr Build Mater 276:122196. https://doi.org/10.1016/j.conbuildmat.2020.122196

    Article  Google Scholar 

  95. Chitsaz S, Tarighat A (2021) Estimation of the modulus of elasticity of NASH and slag-based geopolymer structures containing calcium and magnesium ions as impurities using molecular dynamics simulations. Ceram Int 47(5):6424–6433. https://doi.org/10.1016/j.ceramint.2020.10.224

    Article  Google Scholar 

  96. Zhang J, Li S, Li Z, Liu C, Gao Y (2020) Feasibility study of red mud for geopolymer preparation: effect of particle size fraction. J Mater Cycles Waste Manag 22(5):1328–1338. https://doi.org/10.1007/s10163-020-01023-4

    Article  Google Scholar 

  97. Luna Y, Pereira CF, Izquierdo M (2016) Contributions to the study of porosity in fly ash-based geopolymers. Relationship between degree of reaction, porosity and compressive strength. Mater Constr 66(324):098. https://doi.org/10.3989/mc.2016.10215

    Article  Google Scholar 

  98. Stark J, Bollmann K (1999) Delayed ettringite formation in concrete. In: Proceedings of nordic concrete research meetings Island. BauhausUniversity, Weimar, Germany, pp 4–28

  99. Yu Z, Ma J, Shi H, Shen X, Ye G (2016) Delayed ettringite formation in fly ash concrete under moist curing conditions. Int Conf Durab Concr Struct. https://doi.org/10.5703/1288284316127

    Article  Google Scholar 

  100. Downs B, Yang H (2021) RRUFF Project website. https://rruff.info/Ettringite. Accessed 11 Sept 2021

  101. Ghorab HY, Mabrouk MR, Herfort D, Osman YA (2014) Infrared investigation on systems related to the thaumasite formation at room temperature and 7 °C. Cement Wapno Beton 81:252–261

    Google Scholar 

  102. Whitcomb PJ, Anderson MJ (2004) RSM simplified: optimizing processes using response surface methods for design of experiments. Taylor & Francis, New York

    Book  Google Scholar 

  103. Mermerdas K, Algın Z, Oleiwi SM, Nassani DE (2019) Optimization of lightweight GGBFS and FA geopolymer mortarsby response surface method. Constr Build Mater 139:159–171. https://doi.org/10.1016/j.conbuildmat.2017.02.050

    Article  Google Scholar 

  104. Myers RH, Montgomery DC, Anderson-Cook CM (2009) Response surface methodology: process and product optimization using designed experiments. Wiley, Hoboken

    MATH  Google Scholar 

  105. Derringer D, Suich R (1980) Simultaneous optimization of several response variables. J Qual Technol 12(4):214–219

    Article  Google Scholar 

  106. Zhang L, Yue Y (2018) Influence of waste glass powder usage on the properties of alkali-activated slag mortars based on response surface methodology. Constr Build Mater 181:527–534. https://doi.org/10.1016/j.conbuildmat.2018.06.040

    Article  Google Scholar 

Download references

Acknowledgements

The author received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Kaya.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya, M. The effect of micro-SiO2 and micro-Al2O3 additive on the strength properties of ceramic powder-based geopolymer pastes. J Mater Cycles Waste Manag 24, 333–350 (2022). https://doi.org/10.1007/s10163-021-01323-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-021-01323-3

Keywords

Navigation