Log in

Assessment of tubular reabsorption of phosphate as a surrogate marker for phosphate regulation in chronic kidney disease

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background/Aims

Fibroblast growth factor 23 (FGF23) and soluble α-Klotho are emerging potential biomarkers of phosphorus and vitamin D metabolism which change in concentration in early chronic kidney disease (CKD) in order to maintain normal phosphorus levels. Tubular reabsorption of phosphate (TRP) has been commonly used to assess renal tubular phosphate transport. The aim of this study was to evaluate the usefulness of TRP as a surrogate marker of parameters of CKD-mineral bone disease (CKD-MBD) in CKD.

Methods

A cross-sectional study was performed in 93 stable patients with predialysis CKD stage 1–5. In all patients, TRP, estimated glomerular filtration rate (eGFR), calcium, phosphate, intact parathyroid hormone (iPTH), 25-hydroxyvitamin D, serum FGF23 and urine soluble α-Klotho levels were measured.

Results

As renal function declined, TRP significantly decreased (P < 0.001; r = 0.763) and both iPTH and serum FGF23 increased (P < 0.001; r = −0.598, P < 0.001; r = −0.453, respectively). The prevalence of hyperphosphatemia, secondary hyperparathyroidism, FGF23 excess and abnormal TRP increased progressively with declining eGFR. Although TRP level changed later than FGF23, abnormal levels of both TRP and FGF23 were observed earlier than changes in iPTH and serum phosphate. Decreased TRP was found to be independently associated with decreased eGFR and increased iPTH but was not associated with urine soluble α-Klotho or serum FGF23 level in multiple linear regression analysis.

Conclusion

TRP is a simple, useful and cost-saving surrogate marker of the assessment of altered mineral metabolism in CKD patients and can be used as an alternative to serum FGF23, especially for mild to moderate renal insufficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Isakova T, Gutierrez OM, Wolf M. A blueprint for randomized trials targeting phosphorus metabolism in chronic kidney disease. Kidney Int. 2009;76(7):705–16. doi:10.1038/ki.2009.246.

    Article  CAS  PubMed  Google Scholar 

  2. Gutierrez O, Isakova T, Rhee E, Shah A, Holmes J, Collerone G, et al. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J Am Soc Nephrol JASN. 2005;16(7):2205–15. doi:10.1681/asn.2005010052.

    Article  CAS  Google Scholar 

  3. Martin KJ, Gonzalez EA. Prevention and control of phosphate retention/hyperphosphatemia in CKD-MBD: what is normal, when to start, and how to treat? Clin J Am Soc Nephrol. 2011;6(2):440–6. doi:10.2215/cjn.05130610.

    Article  PubMed  Google Scholar 

  4. Huang CL, Moe OW. Klotho: a novel regulator of calcium and phosphorus homeostasis. Pflugers Arch. 2011;462(2):185–93. doi:10.1007/s00424-011-0950-5.

    Article  CAS  PubMed  Google Scholar 

  5. Hu MC, Shi M, Zhang J, Quinones H, Griffith C, Kuro-o M, et al. Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol JASN. 2011;22(1):124–36. doi:10.1681/asn.2009121311.

    Article  CAS  Google Scholar 

  6. Shimamura Y, Hamada K, Inoue K, Ogata K, Ishihara M, Kagawa T, et al. Serum levels of soluble secreted alpha-Klotho are decreased in the early stages of chronic kidney disease, making it a probable novel biomarker for early diagnosis. Clin Exp Nephrol. 2012;16(5):722–9. doi:10.1007/s10157-012-0621-7.

    Article  CAS  PubMed  Google Scholar 

  7. Payne RB. Renal tubular reabsorption of phosphate (TmP/GFR): indications and interpretation. Ann Clin Biochem. 1998;35(Pt 2):201–6.

    Article  CAS  PubMed  Google Scholar 

  8. Walton Rj, Fau-Bijvoet OL, Bijvoet OL. Nomogram for derivation of renal threshold phosphate concentration. Lancet. 1975;2(7929):309–10.

  9. Isakova T, Wahl P, Vargas GS, Gutierrez OM, Scialla J, **e H, et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 2011;79(12):1370–8. doi:10.1038/ki.2011.47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Levin A, Bakris GL, Molitch M, Smulders M, Tian J, Williams LA, et al. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int. 2007;71(1):31–8. doi:10.1038/sj.ki.5002009.

    Article  CAS  PubMed  Google Scholar 

  11. Isakova T, Gutierrez OM, Smith K, Epstein M, Keating LK, Juppner H, et al. Pilot study of dietary phosphorus restriction and phosphorus binders to target fibroblast growth factor 23 in patients with chronic kidney disease. Nephrol Dial Transplant. 2011;26(2):584–91. doi:10.1093/ndt/gfq419.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Oliveira RB, Cancela AL, Graciolli FG, Dos Reis LM, Draibe SA, Cuppari L, et al. Early control of PTH and FGF23 in normophosphatemic CKD patients: a new target in CKD-MBD therapy? Clin J Am Soc Nephrol. 2010;5(2):286–91. doi:10.2215/cjn.05420709.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Forster IC, Hernando N, Biber J, Murer H. Proximal tubular handling of phosphate: a molecular perspective. Kidney Int. 2006;70(9):1548–59. doi:10.1038/sj.ki.5001813.

    Article  CAS  PubMed  Google Scholar 

  14. Slatopolsky E, Robson AM, Elkan I, Bricker NS. Control of phosphate excretion in uremic man. J Clin Invest. 1968;47(8):1865–74. doi:10.1172/jci105877.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Quarles LD. Endocrine functions of bone in mineral metabolism regulation. J Clin Invest. 2008;118(12):3820–8. doi:10.1172/jci36479.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Quarles LD. Role of FGF23 in vitamin D and phosphate metabolism: implications in chronic kidney disease. Exp Cell Res. 2012;318(9):1040–8. doi:10.1016/j.yexcr.2012.02.027.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Kuro OM. Klotho, phosphate and FGF-23 in ageing and disturbed mineral metabolism. Nat Rev Nephrol. 2013;. doi:10.1038/nrneph.2013.111.

    Google Scholar 

  18. Liu S, Tang W, Zhou J, Stubbs JR, Luo Q, Pi M, et al. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol JASN. 2006;17(5):1305–15. doi:10.1681/asn.2005111185.

    Article  CAS  Google Scholar 

  19. Shimada T, Yamazaki Y, Takahashi M, Hasegawa H, Urakawa I, Oshima T, et al. Vitamin D receptor-independent FGF23 actions in regulating phosphate and vitamin D metabolism. Am J Physiol Renal Physiol. 2005;289(5):F1088–95. doi:10.1152/ajprenal.00474.2004.

    Article  CAS  PubMed  Google Scholar 

  20. Hu MC, Kuro-o M, Moe OW. Klotho and kidney disease. J Nephrol. 2010;23(Suppl 16):S136–44.

    PubMed Central  PubMed  Google Scholar 

  21. Komaba H, Koizumi M, Tanaka H, Takahashi H, Sawada K, Kakuta T, et al. Effects of cinacalcet treatment on serum soluble Klotho levels in haemodialysis patients with secondary hyperparathyroidism. Nephrol Dial Transplant. 2012;27(5):1967–9. doi:10.1093/ndt/gfr645.

    Article  CAS  PubMed  Google Scholar 

  22. Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, et al. FGF23 induces left ventricular hypertrophy. J Clin Invest. 2011;121(11):4393–408. doi:10.1172/jci46122.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Akimoto T, Yoshizawa H, Watanabe Y, Numata A, Yamazaki T, Takeshima E, et al. Characteristics of urinary and serum soluble Klotho protein in patients with different degrees of chronic kidney disease. BMC Nephrol. 2012;13:155. doi:10.1186/1471-2369-13-155.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Kuwahara N, Sasaki S, Kobara M, Nakata T, Tatsumi T, Irie H, et al. HMG-CoA reductase inhibition improves anti-aging klotho protein expression and arteriosclerosis in rats with chronic inhibition of nitric oxide synthesis. Int J Cardiol. 2008;123(2):84–90. doi:10.1016/j.ijcard.2007.02.029.

    Article  PubMed  Google Scholar 

  25. Lim SC, Liu JJ, Subramaniam T, Sum CF. Elevated circulating alpha-klotho by angiotensin II receptor blocker losartan is associated with reduction of albuminuria in type 2 diabetic patients. J Renin Angiotensin Aldosterone Syst JRAAS. 2013;. doi:10.1177/1470320313475905.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor S. W. Kim of the Division of Urology, The Catholic University of Korea and Professor B. S. Choi of Seogang University for their valuable discussions. This study was supported by a grant of the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (C·W.P; A111055).

Conflict of interest

The authors have declared that no conflicts of interest exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheol Whee Park.

About this article

Cite this article

Hong, Y.A., Lim, J.H., Kim, M.Y. et al. Assessment of tubular reabsorption of phosphate as a surrogate marker for phosphate regulation in chronic kidney disease. Clin Exp Nephrol 19, 208–215 (2015). https://doi.org/10.1007/s10157-014-0962-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-014-0962-5

Keywords

Navigation