Log in

Aldosterone stimulates nuclear factor-kappa B activity and transcription of intercellular adhesion molecule-1 and connective tissue growth factor in rat mesangial cells via serum- and glucocorticoid-inducible protein kinase-1

  • Review Article
  • The 36th IUPS Satellite Symposium: The Kidney and Hypertension
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Several clinical and experimental data support the hypothesis that aldosterone contributes to the progression of renal injury. To determine the signaling pathway of aldosterone in relation to fibrosis and inflammation in mesangial cells, we investigated the effects of aldosterone on expression and activation of serum- and glucocorticoid-inducible protein kinase-1 (SGK1), the activation of nuclear factor-kappa B (NF-κB activation, and the expressions of intercellular adhesion molecule-1 (ICAM-1) and connective tissue growth factor (CTGF). Aldosterone stimulated SGK1 expression, phosphorylation (Ser-256), and kinase activity. The increments of phosphorylation and expression of SGK1 induced by aldosterone were inhibited by mineralocorticoid receptor (MR) inhibitor (eplerenone). Aldosterone stimulated NF-κB activity measured by NF-κB responsive elements, luciferase assay, and the levels of inhibitor of kappa B (IκB) phosphorylation. This aldosterone-induced activation of NF-κB was inhibited by the transfection of dominant-negative SGK1. Furthermore, aldosterone augmented the promoter activities and protein expressions of ICAM-1 and CTGF. The effects of aldosterone on ICAM-1 and CTGF promoter activities and protein expressions were inhibited by the transfection of dominant-negative SGK1 and dominant-negative IκBα. We also found that the MR antagonist significantly ameliorated the glomerular injury and enhancements in SGK1, ICAM-1, and CTGF expressions induced by 1% sodium chloride and aldosterone in vivo. In conclusion, our findings suggest that aldosterone stimulates ICAM-1 and CTGF transcription via activation of SGK1 and NF-κB, which may be involved in the progression of aldosterone-induced mesangial fibrosis and inflammation. MR antagonists may serve as useful therapeutic targets for the treatment of glomerular inflammatory disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anderson S, Meyer TW, Rennke HG, Brenner BM. Control of glomerular hypertension limits glomerular injury in rats with reduced renal mass. J Clin Invest. 1985;76:612–9.

    Article  PubMed  CAS  Google Scholar 

  2. Cattran DC, Greenwood C, Ritchie S. Long-term benefits of angiotensin-converting enzyme inhibitor therapy in patients with severe immunoglobulin A nephropathy: a comparison to patients receiving treatment with other antihypertensive agents and to patients receiving no therapy. Am J Kidney Dis. 1994;23:247–54.

    PubMed  CAS  Google Scholar 

  3. Ishidoya S, Morrissey J, Cracken MC, Reyes A, Klahr S. Angiotensin II receptor antagonist ameliorates renal tubulo-interstitial fibrosis caused by unilateral renal obstruction. Kidney Int. 1995;47:1285–94.

    Article  PubMed  CAS  Google Scholar 

  4. Rosenberg ME, Smith LJ, Correa-Rotter R, Hostetter TH. The paradox of the renin–angiotensin system in chronic renal disease. Kidney Int. 1994;45:403–10.

    Article  PubMed  CAS  Google Scholar 

  5. Hollenberg NK. Implications of species difference for clinical investigation: studies on the renin–angiotensin system. Hypertension. 2000;35:150–4.

    PubMed  CAS  Google Scholar 

  6. Brilla CG, Matsubara LS, Weber KT. Anti-aldosterone treatment and the prevention of myocardial fibrosis in primary and secondary hyperaldosteronism. J Mol Cell Cardiol. 1993;25:563–75.

    Article  PubMed  CAS  Google Scholar 

  7. Chrysostomou A, Becker G. Spironolactone in addition to ACE inhibition to reduce proteinuria in patients with chronic renal disease. N Engl J Med. 2001;345:925–6.

    Article  PubMed  CAS  Google Scholar 

  8. Greene EL, Kren S, Hostetter TH. Role of aldosterone in the remnant kidney model. J Clin Invest. 1996;98:1063–8.

    Article  PubMed  CAS  Google Scholar 

  9. Rocha R, Stier CT Jr, Kifor I, Ochoa-Maya MR, Rennke HG, Williams GH, Adler GK. Aldosterone: a mediator of myocardial necrosis and renal arteriopathy. Endocrinology. 2001;141:3891–8.

    Google Scholar 

  10. Johar S, Cave AC, Narayanapanicker A, Grieve DJ, Shah AM. Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase. FASEB J. 2006;20:1546–8.

    Article  PubMed  CAS  Google Scholar 

  11. Rocha R, Chander PN, Zuckerman A, Stier CT. Role of aldosterone in renal vascular injury in stroke-prone hypertensive rats. Hypertension. 1999;33:232–7.

    PubMed  CAS  Google Scholar 

  12. Terada Y, Kobayashi T, Kuwana H, Tanaka H, Inoshita S, Kuwahara M, Sasaki S. Aldosterone stimulates proliferation of mesangial cells by activating mitogen-activated protein kinase 1/2, cyclin D1, and cyclin A. J Am Soc Nephrol. 2005;16:2296–305.

    Article  PubMed  CAS  Google Scholar 

  13. Bhargava A, Fullerton MJ, Myles K, Purdy TM, Funder JW, Pearce D, Cole TJ. The serum- and glucocorticoid-induced kinase is a physiological mediator of aldosterone action. Endocrinology. 2001;142:1587–94.

    Article  PubMed  CAS  Google Scholar 

  14. Lang F, Böhmer C, Palmada M, Seebohm G, Strutz-Seebohm N, Vallon V. (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiol Rev. 2006;86:1151–78.

    Article  PubMed  CAS  Google Scholar 

  15. Webster MK, Goya L, Ge Y, Maiyar AC, Firestone GL. Characterization of sgk, a novel member of the serine/threonine protein kinase gene family which is transcriptionally induced by glucocorticoids and serum. Mol Cell Biol. 1993;13:2031–40.

    PubMed  CAS  Google Scholar 

  16. Waldegger S, Barth P, Raber G, Lang F. Cloning and characterization of a putative human serine/threonine protein kinase transcriptionally modified during anisotonic and isotonic alterations of cell volume. Proc Natl Acad Sci USA. 1997;94:4440–5.

    Article  PubMed  CAS  Google Scholar 

  17. Shigaev A, Asher C, Latter H, Garty H, Reuveny E. Regulation of sgk by aldosterone and its effects on the epithelial Na(+) channel. Am J Physiol. 2000;278:F613–9.

    CAS  Google Scholar 

  18. Náray-Fejes-Tóth A, Canessa C, Cleaveland ES, Aldrich G, Fejes-Tóth G. Sgk is an aldosterone-induced kinase in the renal collecting duct. Effects on epithelial Na+ channels. J Biol Chem. 1999;274:16973–8.

    Article  PubMed  Google Scholar 

  19. Hou J, Speirs HJL, Seckl JR, Brown RW. Sgk1 gene expression in kidney and its regulation by aldosterone: spatio-temporal heterogeneity and quantitative analysis. J Am Soc Nephrol. 2002;13:1190–8.

    Article  PubMed  CAS  Google Scholar 

  20. Lang F, Klingel K, Wagner CA, Stegen C, Wärntges S, Friedrich B, et al. Deranged transcriptional regulation of cell-volume-sensitive kinase hSGK in diabetic nephropathy. Proc Natl Acad Sci USA. 2000;97:8157–62.

    Article  PubMed  CAS  Google Scholar 

  21. Friedrich B, Wärntges S, Klingel K, Sauter M, Kandolf R, Risler T, et al. Up-regulation of the human serum and glucocorticoid-dependent kinase 1 in glomerulonephritis. Kidney Blood Press Res. 2002;25:303–7.

    Article  PubMed  CAS  Google Scholar 

  22. Wärntges S, Klingel K, Weigert C, Fillon S, Buck M, Schleicher E, et al. Excessive transcription of the human serum and glucocorticoid dependent kinase hSGK1 in lung fibrosis. Cell Physiol Biochem. 2002;12:135–42.

    Article  Google Scholar 

  23. Fillon S, Klingel K, Warntges S, Sauter M, Gabrysch S, Pestel S, et al. Expression of the serine/threonine kinase hSGK1 in chronic viral hepatitis. Cell Physiol Biochem. 2002;12:47–54.

    Article  PubMed  CAS  Google Scholar 

  24. Terada Y, Kuwana H, Kobayashi T, Okado T, Suzuki N, Yoshimoto T, et al. Aldosterone-stimulated SGK1 activity mediates profibrotic signaling in the mesangium. J Am Soc Nephrol. 2008;19:298–309.

    Article  PubMed  CAS  Google Scholar 

  25. Moussad EE, Brigstock DR. Connective tissue growth factor: what’s in a name? Mol Genet Metab. 2000;71:276–92.

    Article  PubMed  CAS  Google Scholar 

  26. Wang S, Denichilo M, Brubaker C, Hirschberg R. Connective tissue growth factor in tubulointerstitial injury of diabetic nephropathy. Kidney Int. 2001;60:96–105.

    Article  PubMed  CAS  Google Scholar 

  27. Ito Y, Aten J, Bende RJ, Oemar BS, Rabelink TJ, Weening JJ, Goldschmeding R. Expression of connective tissue growth factor in human renal fibrosis. Kidney Int. 1998;53:853–61.

    Article  PubMed  CAS  Google Scholar 

  28. Riser BL, Varani J, Cortes P, Yee J, Dame M, Sharba AK. Cyclic stretching of mesangial cells up-regulates intercellular adhesion molecule-1 and leukocyte adherence: a possible new mechanism for glomerulosclerosis. Am J Pathol. 2001;158:11–7.

    Article  PubMed  CAS  Google Scholar 

  29. Denton MD, Marsden PA, Luscinskas FW, Brenner BM, Brady HR. Cytokine-induced phagocyte adhesion to human mesangial cells: role of CD11/CD18 integrins and ICAM-1. Am J Physiol. 1991;261:F1071–9.

    PubMed  CAS  Google Scholar 

  30. Hill PA, Lan HY, Nikolic-Paterson DJ, Atkins RC. The ICAM-1/LFA-1 interaction in glomerular leukocytic accumulation in anti-GBM glomerulonephritis. Kidney Int. 1994;45:700–8.

    Article  PubMed  CAS  Google Scholar 

  31. Nishiyama A, Yao L, Nagai Y, Miyata K, Yoshizumi M, Kagami S, et al. Possible contributions of reactive oxygen species and mitogen-activated protein kinase to renal injury in aldosterone/salt-induced hypertensive rats. Hypertension. 2004;24:841–8.

    Article  Google Scholar 

  32. Rocha R, Chander PN, Khanna K, Zuckerman A, Stier CT Jr. Mineralocorticoid blockade reduces vascular injury in stroke-prone hypertensive rats. Hypertension. 1998;31:451–8.

    PubMed  CAS  Google Scholar 

  33. Wulff P, Vallon V, Huang DY, Völkl H, Yu F, Richter K, et al. Impaired renal Na+ retention in the sgk1-knockout mouse. J Clin Invest. 2002;110:1263–8.

    PubMed  CAS  Google Scholar 

  34. Biondi RM, Kieloch A, Currie RA, Deak M, Alessi DR. The PIF-binding pocket in PDK1 is essential for activation of S6K and SGK, but not PKB. EMBO J. 2001;20:4380–90.

    Article  PubMed  CAS  Google Scholar 

  35. Han KH, Kang YS, Han SY, Jee YH, Lee MH, Han JY, et al. Spironolactone ameliorates renal injury and connective tissue growth factor expression in type II diabetic rats. Kidney Int. 2006;70:111–20.

    Article  PubMed  CAS  Google Scholar 

  36. Vallon V, Wyatt AW, Klingel K, Huang DY, Hussain A, Berchtold S, Grahammer F, et al. SGK1-dependent cardiac CTGF formation and fibrosis following DOCA treatment. J Mol Med. 2006;84:396–404.

    Article  PubMed  CAS  Google Scholar 

  37. Zhang L, Cui R, Cheng X, Du J. Antiapoptotic effect of serum and glucocorticoid-inducible protein kinase is mediated by novel mechanism activating IB kinase. Cancer Res. 2005;65:457–64.

    PubMed  CAS  Google Scholar 

  38. Artunc F, Amann K, Nasir O, Friedrich B, Sandulache D, Jahovic N, et al. Blunted DOCA/high salt induced albuminuria and renal tubulointerstitial damage in gene-targeted mice lacking SGK1. J Mol Med. 2006;84:737–46.

    Article  PubMed  CAS  Google Scholar 

  39. Sugimoto H, Shikata K, Hirata K, Akiyama K, Matsuda M, Kushiro M, et al. Increased expression of intercellular adhesion molecule-1 (ICAM-1) in diabetic rat glomeruli: glomerular hyperfiltration is a potential mechanism of ICAM-1 upregulation. Diabetes. 1997;46:2075–83.

    Article  PubMed  CAS  Google Scholar 

  40. Kuster GM, Kotlyar E, Rude MK, Siwik DA, Liao R, Colucci WS, Sam F. Mineralocorticoid receptor inhibition ameliorates the transition to myocardial failure and decreases oxidative stress and inflammation in mice with chronic pressure overload. Circulation. 2005;111:420–7.

    Article  PubMed  CAS  Google Scholar 

  41. Van de Stolpe A, Caldenhoven E, Stade BG, Koenderman L, Raaijmakers JA, Johnson JP, van der Saag PT. 12-O-tetradecanoylphorbol-13-acetate- and tumor necrosis factor alpha-mediated induction of intercellular adhesion molecule-1 is inhibited by dexamethasone. Functional analysis of the human intercellular adhesion molecular-1 promoter. J Biol Chem. 1994;269:6185–92.

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. E.G. Krebs, Dr. Paul T. van der Saag, and Dr. B. Hemmings for providing plasmids. This work was supported by the Research fund of Mitsukoshi Health and Welfare foundation, Mochida Memorial foundation, Naito Memorial foundation, and a grant from the Ministry of Education, Science, Culture and Sports of Japan (to Y.T).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshio Terada.

About this article

Cite this article

Terada, Y., Ueda, S., Hamada, K. et al. Aldosterone stimulates nuclear factor-kappa B activity and transcription of intercellular adhesion molecule-1 and connective tissue growth factor in rat mesangial cells via serum- and glucocorticoid-inducible protein kinase-1. Clin Exp Nephrol 16, 81–88 (2012). https://doi.org/10.1007/s10157-011-0498-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-011-0498-x

Keywords

Navigation