Log in

Top-down Approach for Fabrication of Polymer Microspheres by Interfacial Engineering

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Polymer microspheres with uniform size, composition, and surface property have gained extensive researches in past decades. Conventional bottom-up approaches are using monomers or oligomers to build up desired polymer microspheres. However, directly sha** high-molecular-weight polymers into well-ordered polymer microspheres remains a great challenge. Herein, we reported a facile and efficient top-down approach to fabricate microspheres with high-molecular-weight polymer microfibers. By harnessing interfacial engineering-control during the polymer microspheres formation, uniformly sized microspheres could be produced with widely ranged diameters (from 10 µm to the capillary length of each polymer melt). The size limitation of this approach could be further extended by a controllable Plateau-Rayleigh instability phenomenon. Principally, the top-down approach allows fabrication of microspheres by various polymer melts with surface energy higher than 25 mN/m. Our work paves a way for green, cost-effective, and customizable production of a variety of functional polymer microspheres without any chemical reaction assistant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tibbitt, M. W.; Dahlman, J. E.; Langer, R. Emerging frontiers in drug delivery. J. Am. Chem. Soc.2016, 138, 704–717.

    Article  CAS  Google Scholar 

  2. Hossain, K. M. Z.; Patel, U.; Ahmed, I. Development of microspheres for biomedical applications: a review. Prog. Biomater.2015, 4, 1–19.

    Article  Google Scholar 

  3. Yang, F.; Niu, X.; Gu, X.; Xu, C.; Wang, W.; Fan, Y. Biodegradable magnesium-incorporated poly(L-lactic acid) microspheres for manipulation of drug release and alleviation of inflammatory response. ACS Appl. Mater. Interfaces2019, 11, 23546–23557.

    Article  CAS  Google Scholar 

  4. Salinas-Castillo, A.; Camprubi-Robles, M.; Mallavia, R. Synthesis of a new fluorescent conjugated polymer microsphere for chemical sensing in aqueous media. Chem. Commun.2010, 46, 1263–1265.

    Article  CAS  Google Scholar 

  5. Wei, W.; Lu, R.; Tang, S.; Liu, X. Highly cross-linked fluorescent poly(cyclotriphosphazene-co-curcumin) microspheres for the selective detection of picric acid in solution phase. J. Mater. Chem. A2015, 3, 4604–4611.

    Article  CAS  Google Scholar 

  6. Duan, J.; Liang, X.; Guo, J.; Zhu, K.; Zhang, L. Ultra-stretchable and force-sensitive hydrogels reinforced with chitosan microspheres embedded in polymer networks. Adv. Mater.2016, 28, 8037–8044.

    Article  CAS  Google Scholar 

  7. Hou, J.; Ren, X.; Guan, S.; Duan, L.; Gao, G. H.; Kuai, Y.; Zhang, H. Rapidly recoverable, anti-fatigue, super-tough double-network hydrogels reinforced by macromolecular microspheres. Soft Matter2017, 13, 1357–1363.

    Article  CAS  Google Scholar 

  8. Cheng, K.; Yang, M.; Zhang, R.; Qin, C.; Su, X.; Cheng, Z. Hybrid nanotrimers for dual T1, and T2-weighted magnetic resonance imaging. ACS Nano2014, 8, 9884–9896.

    Article  CAS  Google Scholar 

  9. Zhang, X.; Cao, Y.; Jiang, Q.; Zhang, Y.; Yang, W. Preparation of cross-linked poly(methyl methacrylate) microspheres using an asymmetric cross-linker via dispersion polymerization and its application in light diffusers. Colloid Polym. Sci.2020, 1–10.

  10. Kawaguchi, H. Functional polymer microspheres. Prog. Polym. Sci.2000, 25, 1171–1210.

    Article  CAS  Google Scholar 

  11. Wichaita, W.; Polpanich, D.; Tangboriboonrat, P. Review on synthesis of colloidal hollow particles and their applications. Ind. Eng. Chem. Res.2019, 58, 20880–20901.

    Article  CAS  Google Scholar 

  12. Liang, F.; Zhang, C.; Yang, Z. Rational design and synthesis of Janus composites. Adv. Mater.2014, 26, 6944–6949.

    Article  CAS  Google Scholar 

  13. Zhang, Y.; Cattrall, R. W.; Kolev, S. D. Fast and environmentally friendly microfluidic technique for the fabrication of polymer microspheres. Langmuir2017, 33, 14691–14698.

    Article  CAS  Google Scholar 

  14. Wooh, S.; Huesmann, H.; Tahir, M. N.; Paven, M.; Wichmann, K.; Vollmer, D.; Tremel, W.; Papadopoulos, P.; Butt, H. J. Synthesis of mesoporous supraparticles on superamphiphobic surfaces. Adv. Mater.2015, 27, 7338–7343.

    Article  CAS  Google Scholar 

  15. Zhan, K.; Hou, X. Tunable microscale porous systems with dynamic liquid interfaces. Small2018, 14, 1703283.

    Article  Google Scholar 

  16. Han, H.; Lee, J. S.; Kim, H.; Shin, S.; Lee, J.; Kim, J.; Hou, X.; Cho, S.W.; Seo, J.; Lee, T. Single-droplet multiplex bioassay on a robust and stretchable extreme wetting substrate through vacuum-based droplet manipulation. ACS Nano2018, 12, 932–941.

    Article  CAS  Google Scholar 

  17. Min, L.; Zhang, H.; Pan, H.; Wu, F.; Hu, Y.; Sheng, Z.; Wang, M.; Zhang, M.; Wang, S.; Chen, X. Controllable liquid-liquid printing with defect-free, corrosion-resistance, unrestricted wetting condition. iScience2019, 19, 93–100.

    Article  Google Scholar 

  18. El-Ballouli, A. O.; Bakr, O. M.; Mohammed, O. F. Compositional, processing, and interfacial engineering of nanocrystal- and quantum-dot-based perovskite solar cells. Chem. Mater.2019, 31, 6387–6411.

    Article  CAS  Google Scholar 

  19. Wang, S.; Yang, X.; Wu, F.; Min, L.; Chen, X.; Hou, X. Inner surface design of functional microchannels for microscale flow control. Small2020, 16, 1905318.

    Article  CAS  Google Scholar 

  20. Ju, J.; Yao, X.; Hou, X.; Liu, Q.; Zhang, Y. S.; Khademhosseini, A. A highly stretchable and robust non-fluorinated superhydrophobic surface. J. Mater. Chem. A2017, 5, 16273–16280.

    Article  CAS  Google Scholar 

  21. Cai, C.; Dauskardt, R. H. Nanoscale interfacial engineering for flexible barrier films. Nano Lett.2015, 15, 6751–6755.

    Article  CAS  Google Scholar 

  22. Deng, X.; Paven, M.; Papadopoulos, P.; Ye, M.; Wu, S.; Schuster, T.; Klapper, M.; Vollmer, D.; Butt, H. J. Solvent-free synthesis of microparticles on superamphiphobic surfaces. Angew. Chem. Int. Ed.2013, 52, 11286–11289.

    Article  CAS  Google Scholar 

  23. Kaufman, J. J.; Tao, G.; Shabahang, S.; Banaei, E. H.; Deng, D. S.; Liang, X.; Johnson, S. G.; Fink, Y.; Abouraddy, A. F. Structured spheres generated by an in-fibre fluid instability. Nature2012, 487, 463–467.

    Article  CAS  Google Scholar 

  24. Kaufman, J. J.; Ottman, R.; Tao, G.; Shabahang, S.; Banaei, E. H.; Liang, X.; Johnson, S. G.; Fink, Y.; Chakrabarti, R.; Abouraddy, A. F. In-fiber production of polymeric particles for biosensing and encapsulation. Proc. Natl. Acad. Sci. USA2013, 110, 15549–15554.

    Article  CAS  Google Scholar 

  25. Kuo, T. Y.; Tseng, H. F.; Chiu, Y. J.; Chen, J. T. Morphology transformations of electrospun polymer fibers annealed on polymer films with thickness-controlled growth rates of undulation. Polymer2018, 134, 181–186.

    Article  CAS  Google Scholar 

  26. Du, M.; Ye, S.; Tang, J.; Lv, S.; Chen, J.; Orava, J.; Tao, G.; Lan, P.; Hao, J.; Yang, Z.; Qiu, J.; Zhou, S. Scalable in-fiber manufacture of functional composite particles. ACS Nano2018, 12, 11130–11138.

    Article  CAS  Google Scholar 

  27. Deng, X.; Mammen, L.; Butt, H. J.; Vollmer, D. Candle soot as a template for a transparent robust superamphiphobic coating. Science2012, 335, 67–70.

    Article  CAS  Google Scholar 

  28. Schlaich, C.; Fan, Y.; Dey, P.; Cui, J.; Wei, Q.; Haag, R.; Deng, X. Universal, surfactant-free preparation of hydrogel beads on superamphiphobic and slippery surfaces. Adv. Mater. Interfaces2018, 5, 1701536.

    Article  Google Scholar 

  29. Li, X.; Wang, D.; Tan, Y.; Yang, J.; Deng, X. Designing transparent micro/nano re-entrant-coordinated superamphiphobic surfaces with ultralow solid/liquid adhesion. ACS Appl. Mater. Interfaces2019, 11, 29458–29465.

    Article  CAS  Google Scholar 

  30. Du, X. Y.; Li, Q.; Wu, G.; Chen, S. Multifunctional micro/nanoscale fibers based on microfluidic spinning technology. Adv. Mater.2019, 31, 1903733.

    Article  CAS  Google Scholar 

  31. Xu, L. L.; Wang, C. F.; Chen, S. Microarrays formed by microfluidic spinning as multidimensional microreactors. Angew. Chem. Int. Ed.2014, 53, 3988–3992.

    Article  CAS  Google Scholar 

  32. Zhang, Y.; Wang, C. F.; Chen, L.; Chen, S.; Ryan, A. J. Microfluidic-spinning-directed microreactors toward generation of multiple nanocrystals loaded anisotropic fluorescent microfibers. Adv. Funct. Mater.2015, 25, 7253–7262.

    Article  CAS  Google Scholar 

  33. Yu, B.; Xue, T.; Pang, L.; Zhang, X.; Shen, Y.; Cong, H. The effect of different porogens on porous PMMA microspheres by seed swelling polymerization and its application in high-performance liquid chromatography. Materials2018, 11, 705.

    Article  Google Scholar 

  34. Bux, J.; Manga, M. S.; Hunter, T. N.; Biggs, S. Manufacture of poly(methyl methacrylate) microspheres using membrane emulsification. Philos. T. R. Soc. A2016, 374, 20150134.

    Article  Google Scholar 

  35. Papadopoulos, P.; Vollmer, D.; Butt, H. J. Long-term repellency of liquids by superoleophobic surfaces. Phys. Rev. Lett.2016, 117, 046102.

    Article  Google Scholar 

  36. Zhao, B.; Wang, X.; Zhang, K.; Chen, L.; Deng, X. Impact of viscous droplets on superamphiphobic surfaces. Langmuir2016, 333, 144–151.

    Google Scholar 

  37. Williams, M. L.; Landel, R. F.; Ferry, J. D. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc.1955, 77, 3701–3707.

    Article  CAS  Google Scholar 

  38. Shereshefsky, J. Surface tension of saturated vapors and the equation of Eötvös. J. Phys. Chem.2002, 35, 1712–1720.

    Article  Google Scholar 

  39. Rayleigh, L. XVI. On the instability of a cylinder of viscous liquid under capillary force. Philos. Mag.1892, 34, 145–154.

    Article  Google Scholar 

  40. Young, T. III. An essay on the cohesion of fluids. Philos. Trans. R. Soc. London1805, 95, 65–87.

    Article  Google Scholar 

  41. Laplace, P. S. Traité de mécanique céleste. de l’Imprimerie de Crapelet: 1799; Vol. 1.

  42. Tomotika, S. On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid. Proc. R. Soc. London, Ser. A1935, 150, 322–337.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21603026) and Sichuan Science and Technology Program (No. 2018RZ0115).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-Sheng Wang or Xu Deng.

Additional information

Electronic Supplementary Information

Electronic supplementary information (ESI) is available free of charge in the online version of this article.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Wang, DH., Yang, JL. et al. Top-down Approach for Fabrication of Polymer Microspheres by Interfacial Engineering. Chin J Polym Sci 38, 1286–1293 (2020). https://doi.org/10.1007/s10118-020-2453-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2453-3

Keywords

Navigation