Log in

Effects of low-level laser irradiation on mesenchymal stem cell proliferation: a microarray analysis

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Increased proliferation after low-level laser irradiation (LLLI) has been well demonstrated in many cell types including mesenchymal stem cells (MSCs), but the exact molecular mechanisms involved remain poorly understood. The aim of this study was to investigate the change in mRNA expression in rat MSCs after LLLI and to reveal the associated molecular mechanisms. MSCs were exposed to a diode laser (635 nm) as the irradiated group. Cells undergoing the same procedure without LLLI served as the control group. Proliferation was evaluated using the MTS assay. Differences in the gene expression profiles between irradiated and control MSCs at 4 days after LLLI were analyzed using a cDNA microarray. Gene ontology and pathway analysis were used to find the key regulating genes followed by real-time PCR to validate seven representative genes from the microarray assays. This procedure identified 119 differentially expressed genes. Real-time PCR confirmed that the expression levels of v-akt murine thymoma viral oncogene homolog 1 (Akt1), the cyclin D1 gene (Ccnd1) and the phosphatidylinositol 3-kinase, catalytic alpha polypeptide gene (Pik3ca) were upregulated after LLLI, whereas those of protein tyrosine phosphatase non-receptor type 6 (Ptpn6) and serine/threonine kinase 17b (Stk17b) were downregulated. cDNA microarray analysis revealed that after LLLI the expression levels of various genes involved in cell proliferation, apoptosis and the cell cycle were affected. Five genes, including Akt1, Ptpn6, Stk17b, Ccnd1 and Pik3ca, were confirmed and the PI3K/Akt/mTOR/eIF4E pathway was identified as possibly playing an important role in mediating the effects of LLLI on the proliferation of MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gao X, **ng D (2009) Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci 16:4

    Article  PubMed  Google Scholar 

  2. Tuby H, Maltz L, Oron U (2007) Low-level laser irradiation (LLLI) promotes proliferation of mesenchymal and cardiac stem cells in culture. Lasers Surg Med 39(4):373–378

    Article  PubMed  Google Scholar 

  3. Horvat-Karajz K, Balogh Z, Kovacs V, Drrernat AH, Sreter L, Uher F (2009) In vitro effect of carboplatin, cytarabine, paclitaxel, vincristine, and low-power laser irradiation on murine mesenchymal stem cells. Lasers Surg Med 41(6):463–469

    Article  PubMed  Google Scholar 

  4. Li WT, Leu YC, Wu JL (2010) Red-light light-emitting diode irradiation increases the proliferation and osteogenic differentiation of rat bone marrow mesenchymal stem cells. Photomed Laser Surg 28(Suppl 1):S157–S165

    PubMed  CAS  Google Scholar 

  5. Soleimani M, Abbasnia E, Fathi M, Sahraei H, Fathi Y, Kaka G (2011) The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts – an in vitro study. Lasers Med Sci. doi:10.1007/s10103-011-0930-1

  6. Hou JF, Zhang H, Yuan X, Li J, Wei YJ, Hu SS (2008) In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation. Lasers Surg Med 40(10):726–733

    Article  PubMed  Google Scholar 

  7. Yang Z, Wu Y, Zhang H, ** P, Wang W, Hou J, Wei Y, Hu S (2011) Low-level laser irradiation alters cardiac cytokine expression following acute myocardial infarction: a potential mechanism for laser therapy. Photomed Laser Surg 29(6):391–398

    Article  PubMed  CAS  Google Scholar 

  8. Zhang H, Hou JF, Shen Y, Wang W, Wei YJ, Hu S (2010) Low level laser irradiation precondition to create friendly milieu of infarcted myocardium and enhance early survival of transplanted bone marrow cells. J Cell Mol Med 14(7):1975–1987

    Article  PubMed  CAS  Google Scholar 

  9. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  PubMed  CAS  Google Scholar 

  10. **n Y, Wang YM, Zhang H, Li J, Wang W, Wei YJ, Hu SS (2010) Aging adversely impacts biological properties of human bone marrow-derived mesenchymal stem cells: implications for tissue engineering heart valve construction. Artif Organs 34(3):215–222

    Article  PubMed  Google Scholar 

  11. Cappola TP, Margulies KB (2011) Functional genomics applied to cardiovascular medicine. Circulation 124(1):87–94

    Article  PubMed  Google Scholar 

  12. Mello-Coelho V, Hess KL (2005) A conceptual and practical overview of cDNA microarray technology: implications for basic and clinical sciences. Braz J Med Biol Res 38(10):1543–1552

    Article  PubMed  Google Scholar 

  13. Yu Y, Khan J, Khanna C, Helman L, Meltzer PS, Merlino G (2004) Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators. Nat Med 10(2):175–181

    Article  PubMed  CAS  Google Scholar 

  14. Thakar CV, Zahedi K, Revelo MP, Wang Z, Burnham CE, Barone S, Bevans S, Lentsch AB, Rabb H, Soleimani M (2005) Identification of thrombospondin 1 (TSP-1) as a novel mediator of cell injury in kidney ischemia. J Clin Invest 115(12):3451–3459

    Article  PubMed  CAS  Google Scholar 

  15. Petretto E, Sarwar R, Grieve I et al (2008) Integrated genomic approaches implicate osteoglycin (Ogn) in the regulation of left ventricular mass. Nat Genet 40(5):546–552

    Article  PubMed  CAS  Google Scholar 

  16. Prabhakaran MP, Venugopal JR, Ramakrishna S (2009) Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering. Biomaterials 30(28):4996–5003

    Article  PubMed  CAS  Google Scholar 

  17. Simunovic F, Yi M, Wang Y, Macey L, Brown LT, Krichevsky AM, Andersen SL, Stephens RM, Benes FM, Sonntag KC (2009) Gene expression profiling of substantia nigra dopamine neurons: further insights into Parkinson's disease pathology. Brain 132(7):1795–1809

    Article  PubMed  Google Scholar 

  18. Zou X, Zou L, Foldager C, Bendtsen M, Feng W, Bunger CE (2009) Different mechanisms of spinal fusion using equine bone protein extract, rhBMP-2 and autograft during the process of anterior lumbar interbody fusion. Biomaterials 30(6):991–1004

    Article  PubMed  CAS  Google Scholar 

  19. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108

    Article  PubMed  CAS  Google Scholar 

  20. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  PubMed  CAS  Google Scholar 

  21. Gavish L, Perez L, Gertz SD (2006) Low-level laser irradiation modulates matrix metalloproteinase activity and gene expression in porcine aortic smooth muscle cells. Lasers Surg Med 38(8):779–786

    Article  PubMed  Google Scholar 

  22. Schartinger VH, Galvan O, Riechelmann H, Dudas J (2011) Differential responses of fibroblasts, non-neoplastic epithelial cells, and oral carcinoma cells to low-level laser therapy. Support Care Cancer. doi:10.1007/s00520-011-1113-0

  23. Chen CH, Hung HS, Hsu SH (2008) Low-energy laser irradiation increases endothelial cell proliferation, migration, and eNOS gene expression possibly via PI3K signal pathway. Lasers Surg Med 40(1):46–54

    Article  PubMed  Google Scholar 

  24. Zhang Y, Song S, Fong CC, Tsang CH, Yang Z, Yang M (2003) cDNA microarray analysis of gene expression profiles in human fibroblast cells irradiated with red light. J Invest Dermatol 120(5):849–857

    Article  PubMed  CAS  Google Scholar 

  25. Peplow PV, Chung TY, Baxter GD (2010) Laser photobiomodulation of proliferation of cells in culture: a review of human and animal studies. Photomed Laser Surg 28(Suppl 1):S3–S40

    PubMed  Google Scholar 

  26. Guerout N, Derambure C, Drouot L, Bon-Mardion N, Duclos C, Boyer O, Marie JP (2010) Comparative gene expression profiling of olfactory ensheathing cells from olfactory bulb and olfactory mucosa. Glia 58(13):1570–1580

    PubMed  Google Scholar 

  27. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261–1274

    Article  PubMed  CAS  Google Scholar 

  28. Chang T, Wang R, Olson DJ, Mousseau DD, Ross AR, Wu L (2011) Modification of Akt1 by methylglyoxal promotes the proliferation of vascular smooth muscle cells. FASEB J 25(5):1746–1757

    Article  PubMed  CAS  Google Scholar 

  29. Duda DG, Fukumura D, Jain RK (2004) Role of eNOS in neovascularization: NO for endothelial progenitor cells. Trends Mol Med 10(4):143–145

    Article  PubMed  CAS  Google Scholar 

  30. Uruno A, Sugawara A, Kanatsuka H, Arima S, Taniyama Y, Kudo M, Takeuchi K, Ito S (2004) Hepatocyte growth factor stimulates nitric oxide production through endothelial nitric oxide synthase activation by the phosphoinositide 3-kinase/Akt pathway and possibly by mitogen-activated protein kinase kinase in vascular endothelial cells. Hypertens Res 27(11):887–895

    Article  PubMed  CAS  Google Scholar 

  31. Namkoong S, Lee SJ, Kim CK, Kim YM, Chung HT, Lee H, Han JA, Ha KS, Kwon YG (2005) Prostaglandin E2 stimulates angiogenesis by activating the nitric oxide/cGMP pathway in human umbilical vein endothelial cells. Exp Mol Med 37(6):588–600

    PubMed  CAS  Google Scholar 

  32. Yuan TL, Cantley LC (2008) PI3K pathway alterations in cancer: variations on a theme. Oncogene 27(41):5497–5510

    Article  PubMed  CAS  Google Scholar 

  33. Rodriguez-Ubreva FJ, Cariaga-Martinez AE, Cortes MA, Romero-De Pablos M, Ropero S, Lopez-Ruiz P, Colas B (2010) Knockdown of protein tyrosine phosphatase SHP-1 inhibits G1/S progression in prostate cancer cells through the regulation of components of the cell-cycle machinery. Oncogene 29(3):345–355

    Article  PubMed  CAS  Google Scholar 

  34. Su L, Zhao Z, Bouchard P, Banville D, Fischer EH, Krebs EG, Shen SH (1996) Positive effect of overexpressed protein-tyrosine phosphatase PTP1C on mitogen-activated signaling in 293 cells. J Biol Chem 271(17):10385–10390

    Article  PubMed  CAS  Google Scholar 

  35. Sugano M, Tsuchida K, Hata T, Makino N (2005) RNA interference targeting SHP-1 attenuates myocardial infarction in rats. FASEB J 19(14):2054–2056

    PubMed  CAS  Google Scholar 

  36. Kuwahara H, Nakamura N, Kanazawa H (2006) Nuclear localization of the serine/threonine kinase DRAK2 is involved in UV-induced apoptosis. Biol Pharm Bull 29(2):225–233

    Article  PubMed  CAS  Google Scholar 

  37. Sanjo H, Kawai T, Akira S (1998) DRAKs, novel serine/threonine kinases related to death-associated protein kinase that trigger apoptosis. J Biol Chem 273(44):29066–29071

    Article  PubMed  CAS  Google Scholar 

  38. Yang K, Hitomi M, Stacey DW (2006) Variations in cyclin D1 levels through the cell cycle determine the proliferative fate of a cell. Cell Div 1:32

    Article  PubMed  Google Scholar 

  39. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296(5573):1655–1657

    Article  PubMed  CAS  Google Scholar 

  40. Samuels Y, Diaz LA Jr, Schmidt-Kittler O, Cummins JM, Delong L, Cheong I, Rago C, Huso DL, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE (2005) Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 7(6):561–573

    Article  PubMed  CAS  Google Scholar 

  41. Gingras AC, Kennedy SG, O'Leary MA, Sonenberg N, Hay N (1998) 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev 12(4):502–513

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Natural Science Foundation of China (81070099) and Fok Ying-tong Education Foundation (121041). The authors thank Mr. Michael Zhao of the University of California, San Diego, for his excellent language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 93 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Yh., Wang, J., Gong, Dx. et al. Effects of low-level laser irradiation on mesenchymal stem cell proliferation: a microarray analysis. Lasers Med Sci 27, 509–519 (2012). https://doi.org/10.1007/s10103-011-0995-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-011-0995-x

Keywords

Navigation