Log in

Blood–brain barrier dysfunction and myelin basic protein in survival of amyotrophic lateral sclerosis with or without frontotemporal dementia

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Objective

We aim to investigate blood–brain barrier (BBB) dysfunction and myelin basic protein (MBP) in amyotrophic lateral sclerosis (ALS) with or without frontotemporal dementia (FTD) and further determine the effect of these factors on the survival of ALS.

Methods

This was a retrospective study of 113 ALS patients, 12 ALS-FTD patients, and 40 disease controls hospitalized between September 2013 and October 2020. CSF parameters including total protein (TP), albumin (Alb), immunoglobulin-G (IgG), and MBP were collected and compared between groups. The CSF-TP, CSF-Alb, CSF-IgG, and CSF/serum quotients of Alb and IgG (QAlb, QIgG) were used to reflect the BBB status. Patients were followed up until December 2020. Cox regression and Kaplan–Meier method were used for survival analysis.

Results

The CSF-TP, CSF-Alb, and CSF-IgG concentrations were significantly higher in patients than controls (p < 0.01). Increased CSF-TP and CSF-IgG was found in 45 (39.8%) and 27 (23.9%) ALS patients, while in 7 (58.3%) and 5 (41.7%) ALS-FTD patients. The level of CSF-Alb, CSF-IgG, and CSF-MBP were significantly higher in patients with ALS-FTD than ALS. MBP showed a moderate accuracy in the distinction between ALS-FTD and ALS (AUC = 0.715 ± 0.101). No difference in MBP was found between patients and controls. Kaplan–Meier analysis indicated that a higher CSF-TP, CSF-IgG, QIgG, or QAlb was significantly associated with shorter survival. Cox regression model showed that CSF-TP, CSF-IgG, and QIgG were independent predictors of survival.

Conclusion

Our findings suggested that BBB dysfunction was more prominent in ALS-FTD than ALS and associated with a worse prognosis. Further studies are needed to determine the role of CSF-MBP as a biomarker in ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Ferrari R, Kapogiannis D, Huey ED, Momeni P (2011) FTD and ALS: a tale of two diseases. Curr Alzheimer Res 8:273–94. https://doi.org/10.2174/156720511795563700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sweeney MD, Sagare AP, Zlokovic BV (2018) Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 14:133–150. https://doi.org/10.1038/nrneurol.2017.188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Winkler EA, Sengillo JD, Sagare AP, Zhao Z, Ma Q, Zuniga E, Wang Y, Zhong Z, Sullivan JS, Griffin JH, Cleveland DW, Zlokovic BV (2014) Blood-spinal cord barrier disruption contributes to early motor-neuron degeneration in ALS-model mice. Proc Natl Acad Sci USA 111:E1035-42. https://doi.org/10.1073/pnas.1401595111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sasaki S (2015) Alterations of the blood-spinal cord barrier in sporadic amyotrophic lateral sclerosis. Neuropathology 35:518–28. https://doi.org/10.1111/neup.12221

    Article  CAS  PubMed  Google Scholar 

  5. Niebroj-Dobosz I, Janik P, Sokolowska B, Kwiecinski H (2010) Matrix metalloproteinases and their tissue inhibitors in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Eur J Neurol 17:226–31. https://doi.org/10.1111/j.1468-1331.2009.02775.x

    Article  CAS  PubMed  Google Scholar 

  6. Saul J, Hutchins E, Reiman R, Saul M, Ostrow LW, Harris BT, Van Keuren-Jensen K, Bowser R, Bakkar N (2020) Global alterations to the choroid plexus blood-CSF barrier in amyotrophic lateral sclerosis. Acta Neuropathol Commun 8:92. https://doi.org/10.1186/s40478-020-00968-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV (2019) Blood-brain barrier: from physiology to disease and back. Physiol Rev 99:21–78. https://doi.org/10.1152/physrev.00050.2017

    Article  CAS  PubMed  Google Scholar 

  8. Clarke BE, Patani R (2020) The microglial component of amyotrophic lateral sclerosis. Brain 143:3526–3539. https://doi.org/10.1093/brain/awaa309

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pehar M, Harlan BA, Killoy KM, Vargas MR (2017) Role and Therapeutic Potential of Astrocytes in Amyotrophic Lateral sclerosis. Curr Pharm Des 23:5010–5021. https://doi.org/10.2174/1381612823666170622095802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boggs JM (2006) Myelin basic protein: a multifunctional protein. Cell Mol Life Sci 63:1945–61. https://doi.org/10.1007/s00018-006-6094-7

    Article  CAS  PubMed  Google Scholar 

  11. Vassall KA, Bamm VV, Harauz G (2015) MyelStones: the executive roles of myelin basic protein in myelin assembly and destabilization in multiple sclerosis. Biochem J 472:17–32. https://doi.org/10.1042/BJ20150710

    Article  CAS  PubMed  Google Scholar 

  12. Bohnert S, Wirth C, Schmitz W, Trella S, Monoranu CM, Ondruschka B, Bohnert M (2021) Myelin basic protein and neurofilament H in postmortem cerebrospinal fluid as surrogate markers of fatal traumatic brain injury. Int J Legal Med. https://doi.org/10.1007/s00414-021-02606-y

  13. Zavialova MG, Shevchenko VE, Nikolaev EN, Zgoda VG (2017) Is myelin basic protein a potential biomarker of brain cancer? Eur J Mass Spectrom (Chichester) 23:192–196. https://doi.org/10.1177/1469066717719810

    Article  CAS  Google Scholar 

  14. Brooks BR, Miller RG, Swash M, Munsat TL (2000) World Federation of Neurology Research Group on Motor Neuron D. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–9. https://doi.org/10.1080/146608200300079536

    Article  CAS  PubMed  Google Scholar 

  15. Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, van Swieten JC, Seelaar H, Dopper EG, Onyike CU, Hillis AE, Josephs KA, Boeve BF, Kertesz A, Seeley WW, Rankin KP, Johnson JK, Gorno-Tempini ML, Rosen H, Prioleau-Latham CE, Lee A, Kipps CM, Lillo P, Piguet O, Rohrer JD, Rossor MN, Warren JD, Fox NC, Galasko D, Salmon DP, Black SE, Mesulam M, Weintraub S, Dickerson BC, Diehl-Schmid J, Pasquier F, Deramecourt V, Lebert F, Pijnenburg Y, Chow TW, Manes F, Grafman J, Cappa SF, Freedman M, Grossman M, Miller BL (2011) Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134:2456–77. https://doi.org/10.1093/brain/awr179

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cui B, Cui L, Gao J, Liu M, Li X, Liu C, Ma J, Fang J (2015) Cognitive impairment in Chinese patients with sporadic amyotrophic lateral sclerosis. PLoS One 10:e0137921. https://doi.org/10.1371/journal.pone.0137921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Freedman MS, Thompson EJ, Deisenhammer F, Giovannoni G, Grimsley G, Keir G, Ohman S, Racke MK, Sharief M, Sindic CJ, Sellebjerg F, Tourtellotte WW (2005) Recommended standard of cerebrospinal fluid analysis in the diagnosis of multiple sclerosis: a consensus statement. Arch Neurol 62:865–70. https://doi.org/10.1001/archneur.62.6.865

    Article  PubMed  Google Scholar 

  18. Glasner H (1975) Barrier impairment and immune reaction in the cerebrospinal fluid. Eur Neurol 13:304–14. https://doi.org/10.1159/000114685

    Article  CAS  PubMed  Google Scholar 

  19. Meucci G, Rossi G, Bettini R, Montanaro D, Gironelli L, Voci L, Bianchi F (1993) Laser nephelometric evaluation of albumin, IgG and alpha 2-macroglobulin: applications to the study of alterations of the blood-brain barrier. J Neurol Sci 118:73–8. https://doi.org/10.1016/0022-510x(93)90248-w

    Article  CAS  PubMed  Google Scholar 

  20. Stevens A, Weller M, Wietholter H (1993) A characteristic ganglioside antibody pattern in the CSF of patients with amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 56:361. https://doi.org/10.1136/jnnp.56.4.361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Apostolski S, Nikolic J, Bugarski-Prokopljevic C, Miletic V, Pavlovic S, Filipovic S (1991) Serum and CSF immunological findings in ALS. Acta Neurol Scand 83:96–8. https://doi.org/10.1111/j.1600-0404.1991.tb04656.x

    Article  CAS  PubMed  Google Scholar 

  22. Zhao X, Yang F, Wang H, Cui F, Li M, Sun B, Li Y, Sun Q, He Z, Li Y, Huang X (2020) The increase in CSF total protein and immunoglobulins in Chinese patients with sporadic amyotrophic lateral sclerosis: A retrospective study. J Neurol Sci 414:116840. https://doi.org/10.1016/j.jns.2020.116840

    Article  CAS  PubMed  Google Scholar 

  23. Leonardi A, Abbruzzese G, Arata L, Cocito L, Vische M (1984) Cerebrospinal fluid (CSF) findings in amyotrophic lateral sclerosis. J Neurol 231:75–8. https://doi.org/10.1007/BF00313720

    Article  CAS  PubMed  Google Scholar 

  24. Ticozzi N, Tiloca C, Mencacci NE, Morelli C, Doretti A, Rusconi D, Colombrita C, Sangalli D, Verde F, Finelli P, Messina S, Ratti A, Silani V (2013) Oligoclonal bands in the cerebrospinal fluid of amyotrophic lateral sclerosis patients with disease-associated mutations. J Neurol 260:85–92. https://doi.org/10.1007/s00415-012-6589-0

    Article  CAS  PubMed  Google Scholar 

  25. Lu CH, Allen K, Oei F, Leoni E, Kuhle J, Tree T, Fratta P, Sharma N, Sidle K, Howard R, Orrell R, Fish M, Greensmith L, Pearce N, Gallo V, Malaspina A (2016) Systemic inflammatory response and neuromuscular involvement in amyotrophic lateral sclerosis. Neurol Neuroimmunol Neuroinflamm 3:e244. https://doi.org/10.1212/NXI.0000000000000244

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lu CH, Macdonald-Wallis C, Gray E, Pearce N, Petzold A, Norgren N, Giovannoni G, Fratta P, Sidle K, Fish M, Orrell R, Howard R, Talbot K, Greensmith L, Kuhle J, Turner MR, Malaspina A (2015) Neurofilament light chain: a prognostic biomarker in amyotrophic lateral sclerosis. Neurology 84:2247–57. https://doi.org/10.1212/WNL.0000000000001642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chelstowska B, Kuzma-Kozakiewicz M (2020) Biochemical parameters in determination of nutritional status in amyotrophic lateral sclerosis. Neurol Sci 41:1115–1124. https://doi.org/10.1007/s10072-019-04201-x

    Article  PubMed  Google Scholar 

  28. Hansson O, Janelidze S, Hall S, Magdalinou N, Lees AJ, Andreasson U, Norgren N, Linder J, Forsgren L, Constantinescu R, Zetterberg H, Blennow K, Fs Swedish Bio (2017) Blood-based NfL: a biomarker for differential diagnosis of parkinsonian disorder. Neurology 88:930–937. https://doi.org/10.1212/WNL.0000000000003680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Varhaug KN, Torkildsen O, Myhr KM, Vedeler CA (2019) Neurofilament light chain as a biomarker in multiple sclerosis. Front Neurol 10:338. https://doi.org/10.3389/fneur.2019.00338

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mattsson N, Cullen NC, Andreasson U, Zetterberg H, Blennow K (2019) Association between longitudinal plasma neurofilament light and neurodegeneration in patients with Alzheimer disease. JAMA Neurol 76:791–799. https://doi.org/10.1001/jamaneurol.2019.0765

    Article  PubMed  PubMed Central  Google Scholar 

  31. Thouvenot E, Demattei C, Lehmann S, Maceski-Maleska A, Hirtz C, Juntas-Morales R, Pageot N, Esselin F, Alphandery S, Vincent T, Camu W (2020) Serum neurofilament light chain at time of diagnosis is an independent prognostic factor of survival in amyotrophic lateral sclerosis. Eur J Neurol 27:251–257. https://doi.org/10.1111/ene.14063

    Article  CAS  PubMed  Google Scholar 

  32. Brodovitch A, Boucraut J, Delmont E, Parlanti A, Grapperon AM, Attarian S, Verschueren A (2021) Combination of serum and CSF neurofilament-light and neuroinflammatory biomarkers to evaluate ALS. Sci Rep 11:703. https://doi.org/10.1038/s41598-020-80370-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Coatti GC, Frangini M, Valadares MC, Gomes JP, Lima NO, Cavacana N, Assoni AF, Pelatti MV, Birbrair A, de Lima ACP, Singer JM, Rocha FMM, Da Silva GL, Mantovani MS, Macedo-Souza LI, Ferrari MFR, Zatz M (2017) Pericytes extend survival of ALS SOD1 mice and induce the expression of antioxidant enzymes in the murine model and in IPSCs derived neuronal cells from an ALS patient. Stem Cell Rev Rep 13:686–698. https://doi.org/10.1007/s12015-017-9752-2

    Article  CAS  PubMed  Google Scholar 

  34. Almutairi MM, Gong C, Xu YG, Chang Y, Shi H (2016) Factors controlling permeability of the blood-brain barrier. Cell Mol Life Sci 73:57–77. https://doi.org/10.1007/s00018-015-2050-8

    Article  CAS  PubMed  Google Scholar 

  35. Caroppo P, Le Ber I, Camuzat A, Clot F, Naccache L, Lamari F, De Septenville A, Bertrand A, Belliard S, Hannequin D, Colliot O, Brice A (2014) Extensive white matter involvement in patients with frontotemporal lobar degeneration: think progranulin. JAMA Neurol 71:1562–6. https://doi.org/10.1001/jamaneurol.2014.1316

    Article  PubMed  Google Scholar 

  36. Sudre CH, Bocchetta M, Heller C, Convery R, Neason M, Moore KM, Cash DM, Thomas DL, Woollacott IOC, Foiani M, Heslegrave A, Shafei R, Greaves C, van Swieten J, Moreno F, Sanchez-Valle R, Borroni B, Laforce R Jr, Masellis M, Tartaglia MC, Graff C, Galimberti D, Rowe JB, Finger E, Synofzik M, Vandenberghe R, de Mendonca A, Tagliavini F, Santana I, Ducharme S, Butler C, Gerhard A, Levin J, Danek A, Frisoni GB, Sorbi S, Otto M, Zetterberg H, Ourselin S, Cardoso MJ, Rohrer JD, On behalf of G, (2019) White matter hyperintensities in progranulin-associated frontotemporal dementia: a longitudinal GENFI study. Neuroimage Clin 24:102077. https://doi.org/10.1016/j.nicl.2019.102077

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sudre CH, Bocchetta M, Cash D, Thomas DL, Woollacott I, Dick KM, van Swieten J, Borroni B, Galimberti D, Masellis M, Tartaglia MC, Rowe JB, Graff C, Tagliavini F, Frisoni G, Laforce R Jr, Finger E, de Mendonca A, Sorbi S, Ourselin S, Cardoso MJ, Rohrer JD, Genetic Ftd Initiative G (2017) White matter hyperintensities are seen only in GRN mutation carriers in the GENFI cohort. Neuroimage Clin 15:171–180. https://doi.org/10.1016/j.nicl.2017.04.015

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hiji M, Takahashi T, Fukuba H, Yamashita H, Kohriyama T, Matsumoto M (2008) White matter lesions in the brain with frontotemporal lobar degeneration with motor neuron disease: TDP-43-immunopositive inclusions co-localize with p62, but not ubiquitin. Acta Neuropathol 116(183):91. https://doi.org/10.1007/s00401-008-0402-2

    Article  CAS  Google Scholar 

  39. Kim S, Chung AY, Na JE, Lee SJ, Jeong SH, Kim E, Sun W, Rhyu IJ (1921) Park HC 2019 Myelin degeneration induced by mutant superoxide dismutase 1 accumulation promotes amyotrophic lateral sclerosis. Glia 67:1910. https://doi.org/10.1002/glia.23669

    Article  Google Scholar 

  40. Lu Y, Tang C, Zhu L, Li J, Liang H, Zhang J, Xu R (2016) The overexpression of TDP-43 protein in the neuron and oligodendrocyte cells causes the progressive motor neuron degeneration in the SOD1 G93A transgenic mouse model of amyotrophic lateral sclerosis. Int J Biol Sci 12:1140–9. https://doi.org/10.7150/ijbs.15938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lorente Pons A, Higginbottom A, Cooper-Knock J, Alrafiah A, Alofi E, Kirby J, Shaw PJ, Wood JD, Highley JR (2020) Oligodendrocyte pathology exceeds axonal pathology in white matter in human amyotrophic lateral sclerosis. J Pathol 251:262–271. https://doi.org/10.1002/path.5455

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the patients for their participation in our study, and also thank all the related researchers involved in this study for their help and valuable suggestions.

Funding

This work was supported by Strategic Priority Research Program of the Chinese Academy of Sciences (Grant number: XDB39040100), Chinese Academy of Medical Science Neuroscience Center Fund “Molecular diagnosis and pathogenesis of ALS” (Grant number: 2014xh0601_A322102), and “Molecular diagnosis and neural network of ALS” (Grant number: 20141001_A322104).

Author information

Authors and Affiliations

Authors

Contributions

JL: acquisition of data, statistical analysis, and manuscript writing. ZC: data collection. XS: data collection. DS: statistical analysis. XY: data review. ML: manuscript editing. LC: study concept and design, manuscript editing, and critical revision.

Corresponding author

Correspondence to Li-Ying Cui.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

The research was approved by the Ethics Committee of Peking Union Medical College Hospital and informed consent was obtained from all patients.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, JY., Cai, ZY., Sun, XH. et al. Blood–brain barrier dysfunction and myelin basic protein in survival of amyotrophic lateral sclerosis with or without frontotemporal dementia. Neurol Sci 43, 3201–3210 (2022). https://doi.org/10.1007/s10072-021-05731-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-021-05731-z

Keywords

Navigation