Log in

Involvement of AMPK/mTOR/HIF-1α in anticancer control of quercetin in hypoxic MCF-7 cells

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Quercetin has been reported to possess therapeutic effects in the treatment of cancers. In this study, the molecular action of quercetin, with emphasis on its ability to control the intracellular signaling cascades of hypoxia inducible factor-1α (HIF-1α), mammalian target of rapamycin (mTOR), and AMP-activated protein kinase (AMPK), responsible for survival or induction of apoptosis in hypoxic MCF-7 cells, was investigated. The effects of quercetin on apoptosis in relation to its ability to prevent HIF-1α induction were investigated. The involvement of HIF-1α reduction in quercetin-based cancer control was clearly shown in conditions of mTOR inhibition by rapamycin, an mTOR inhibitor. Surprisingly, quercetin induced an AMPK-suppressed state in a CoCl2-induced hypoxic condition. It is speculated that quercetin is capable of inhibiting AMPK to decrease HIF-1α, which is a critical survival factor in hypoxia. A complex control of HIF-1α, mTOR, and AMPK is necessary in inducing apoptosis of MCF-7 breast cancer cells under hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luo Z, Zang M, Guo W. AMPK as a metabolic tumor suppressor: Control of metabolism and cell growth. Future Oncol. 6: 457–470 (2010)

    Article  CAS  Google Scholar 

  2. Shaw R. LKB1 and AMP-activated protein kinase control of mTOR signalling and growth. Acta Physiol. 196: 65–80 (2009)

    Article  CAS  Google Scholar 

  3. LoPiccolo J, Blumenthal GM, Bernstein WB, Dennis PA. Targeting the PI3K/Akt/mTOR pathway: Effective combinations and clinical considerations. Drug Resist. Update 11: 32–50 (2008)

    Article  CAS  Google Scholar 

  4. Motoshima H, Goldstein BJ, Igata M, Araki E. AMPK and cell proliferation-AMPK as a therapeutic target for atherosclerosis and cancer. J. Physiol. 574: 63–71 (2006)

    Article  CAS  Google Scholar 

  5. Wang W, Guan KL. AMP-activated protein kinase and cancer. Acta Physiol. 196: 55–63 (2009)

    Article  CAS  Google Scholar 

  6. Lee YK, Lee WS, Hwang JT, Kwon DY, Surh YJ, Park OJ. Curcumin exerts antidifferentiation effect through AMPKα-PPAR-γ in 3T3-L1 adipocytes and antiproliferatory effect through AMPKα-COX-2 in cancer cells. J. Agr. Food Chem. 57: 305–310 (2009)

    Article  CAS  Google Scholar 

  7. Rutter GA, Da Silva Xavier G, Leclerc I. Roles of 5′-AMP-activated protein kinase (AMPK) in mammalian glucose homoeostasis. Biochem. J. 375: 1–16 (2003)

    Article  CAS  Google Scholar 

  8. Laderoute KR, Amin K, Calaoagan JM, Knapp M, Le T, Orduna J, Foretz M, Viollet B. 5′-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments. Mol. Cell Biol. 26: 5336–5347 (2006)

    Article  CAS  Google Scholar 

  9. Hardie DG, Hawley SA, Scott JW. AMP-activated protein kinase—development of the energy sensor concept. J. Physiol. 574: 7–15 (2006)

    Article  CAS  Google Scholar 

  10. Axelson H, Fredlund E, Ovenberger M, Landberg G, Påhlman S. Hypoxia-induced dedifferentiation of tumor cells—a mechanism behind heterogeneity and aggressiveness of solid tumors. Semin. Cell Dev. Biol. 16: 554–563 (2005)

    Article  CAS  Google Scholar 

  11. Pouysségur J, Dayan F, Mazure NM. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441: 437–443 (2006)

    Article  Google Scholar 

  12. Vaupel P. The role of hypoxia-induced factors in tumor progression. Oncologist 5: 10–17 (2004)

    Article  Google Scholar 

  13. Nagle DG, Zhou YD. Natural product-based inhibitors of hypoxiainducible factor-1 (HIF-1). Curr. Drug Targets 7: 355–369 (2006)

    Article  CAS  Google Scholar 

  14. Manolescu B, Oprea E, Busu C, Cercasov C. Natural compounds and the hypoxia-inducible factor (HIF) signalling pathway. Biochimie 91: 1347–1358 (2009)

    Article  CAS  Google Scholar 

  15. Jung SN, Yang WK, Kim J, Kim HS, Kim EJ, Yun H, Park H, Kim SS, Choe W, Kang I, Ha J. Reactive oxygen species stabilize hypoxia-inducible factor-1α protein and stimulate transcriptional activity via AMP-activated protein kinase in DU145 human prostate cancer cells. Carcinogenesis 29: 713–721 (2008)

    Article  CAS  Google Scholar 

  16. Shackelford DB, Vasquez DS, Corbeil J, Wu S, Leblanc M, Wu CL, Vera DR, Shaw RJ. mTOR and HIF-1α-mediated tumor metabolism in an LKB1 mouse model of Peutz-Jeghers syndrome. P. Natl. Acad. Sci. USA 106: 11137–11142 (2009)

    Article  CAS  Google Scholar 

  17. Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F, Giaccia AJ, Abraham RT. Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol. Cell Biol. 22: 7004–7014 (2002)

    Article  CAS  Google Scholar 

  18. Brahimi-Horn MC, Chiche J, Pouysségur J. Hypoxia and cancer. J. Mol. Med. 85: 1301–1307 (2007)

    Article  Google Scholar 

  19. Semenza GL. Hypoxia-inducible factor 1: Master regulator of O2 homeostasis. Curr. Opin. Genet. Dev. 8: 588–594 (1998)

    Article  CAS  Google Scholar 

  20. Brahimi-Horn C, Mazure N, Pouysségur J. Signalling via the hypoxia-inducible factor-1α requires multiple posttranslational modifications. Cell Signal 1: 1–9 (2005)

    Article  Google Scholar 

  21. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. P. Natl. Acad. Sci. USA 92: 5510–5514 (1995)

    Article  CAS  Google Scholar 

  22. Bruick RK, McKnight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 545: 1337–1340 (2001)

    Article  Google Scholar 

  23. Lee DH, Lee YJ. Quercetin suppresses hypoxia-induced accumulation of hypoxia-inducible factor-1α (HIF-1α) through inhibiting protein synthesis. J. Cell Biochem. 105: 546–553 (2008)

    Article  CAS  Google Scholar 

  24. Park SS, Bae I, Lee YJ. Flavonoids-induced accumulation of hypoxia-inducible factor (HIF)-1α/2α is mediated through chelation of iron. J. Cell Biochem. 103: 1989–1998 (2008)

    Article  CAS  Google Scholar 

  25. Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePPinho RAN, Cantley LC. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell. 6: 91–99 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ock ** Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, YK., Park, O.J. Involvement of AMPK/mTOR/HIF-1α in anticancer control of quercetin in hypoxic MCF-7 cells. Food Sci Biotechnol 20, 371–375 (2011). https://doi.org/10.1007/s10068-011-0052-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-011-0052-3

Keywords

Navigation