Log in

Effects of myogenin on expression of late muscle genes through MyoD-dependent chromatin remodeling ability of myogenin

  • Research Article
  • Published:
Molecules and Cells

Abstract

MyoD and myogenin (Myog) recognize sets of distinct but overlap** target genes and play different roles in skeletal muscle differentiation. MyoD is sufficient for near-full expression of early targets, while Myog can only partially enhance expression of MyoD-initiated late muscle genes. However, the way in which Myog enhances the expression of MyoD-initiated late muscle genes remains unclear. Here, we examine the effects of Myog on chromatin remodeling at late muscle gene promoters and their activation within chromatin environment. Chromatin immunoprecipitation (ChIP) assay showed that Myog selectively bound to the regulatory sequences of late muscle genes. Overexpression of Myog was found to overcome sodium butyrateinhibited chromatin at late muscle genes in differentiating C2C12 myoblasts, shifting the transcriptional activation of these genes to an earlier time period. Furthermore, overexpression of Myog led to increased hyperacetylation of core histone H4 in differentiating C2C12 myoblasts but not NIH3T3 fibroblasts, and hyperacetylated H4 was associated directly with the late muscle genes in differentiating C2C12, indicating that Myog can induce chromatin remodeling in the presence of MyoD. In addition, co-immunoprecipitation (CoIP) revealed that Myog was associated with the nuclear protein Brd4 in differentiating C2C12 myoblasts. Together, these results suggest that Myog enhances the expression of MyoD-initiated late muscle genes through MyoD-dependent ability of Myog to induce chromatin remodeling, in which Myog-Brd4 interaction may be involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ai, N.P., Hu, X.M., Ding, F., Yu, B.F., Wang, H.P., Lu, X.D., Zhang, K., Li, Y.N., Han, A.D., Lin, W., et al. (2011). Signal-induced Brd4 release from chromatin is essential for its role transition from chromatin targeting to transcriptional regulation. Nucleic Acids Res. 39, 9592–9604.

    Article  PubMed  CAS  Google Scholar 

  • Asakura, A., Fujisawa-Sehara, A., Komiya, T., Nabeshima, Y., and Nabeshima, Y. (1993). MyoD and myogenin act on the chicken myosin light chain 1 gene as distinct transcriptional factors. Mol. Cell. Biol. 13, 7153–7162.

    PubMed  CAS  Google Scholar 

  • Bergstrom, D.A., Penn, B.H., Strand, A., Perry, R.L., Rudnicki, M.A., and Tapscott, S.J. (2002). Promoter-specific regulation of MyoD binding and signal transduction cooperate to pattern gene expression. Mol. Cell 9, 587–600.

    Article  PubMed  CAS  Google Scholar 

  • Berkes, C.A., and Tapscott, S.J. (2005). MyoD and the transcriptional control of myogenesis. Semin. Cell Dev. Biol. 16, 585–595.

    Article  PubMed  CAS  Google Scholar 

  • Berkes, C.A., Bergstrom, D.A., Penn, B.H., Seaver, K.J., Knoepfler, P.S., and Tapscott, S.J. (2004). Pbx marks genes for activation by MyoD indicating a role for a homeodomain protein in establishing myogenic potential. Mol. Cell 14, 465–477.

    Article  PubMed  CAS  Google Scholar 

  • Blackwell, T.K., and Weintraub, H. (1990). Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection. Science 250, 1104–1110.

    Article  PubMed  CAS  Google Scholar 

  • Blais, A., Tsikitis, M., Acosta-Alvear, D., Sharan, R., Kluger, Y., and Dynlacht, B.D. (2005). An initial blueprint for myogenic differenttiation. Genes Dev. 19, 553–569.

    Article  PubMed  CAS  Google Scholar 

  • Braun, T., Buschhausen-Denkerm G., Bober, E., Tannich, E., and Arnold, H.H. (1989). A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. EMBO J. 8, 701–709.

    PubMed  CAS  Google Scholar 

  • Brennan, T.J., Edmondson, D.G., and Olson, E.N. (1990). Aberrant regulation of MyoD1 contributes to the partially defective myogenic phenotype of the BC3H1 muscle cell line. J. Cell Biol. 110, 929–937.

    Article  PubMed  CAS  Google Scholar 

  • Buckingham, M. (2001). Skeletal muscle formation in vertebrates. Curr. Opin. Genet. Dev. 11, 440–448.

    Article  PubMed  CAS  Google Scholar 

  • Cao, Y., Kumar, R.M., Penn, B.H., Berkes, C.A., Kooperberg, C., Boyer, L.A., Young, R.A., and Tapscott, S.J. (2006). Global and genespecific analyses show distinct roles for Myod and Myog at a common set of promoters. EMBO J. 25, 502–511.

    Article  PubMed  CAS  Google Scholar 

  • Covault, J., Sealy, L., Schnell, R., Shires, A., and Chalkley, R. (1982). Histone hypoacetylation following release of HTC cells from butyrate. J. Biol. Chem. 257, 5809–5815.

    PubMed  CAS  Google Scholar 

  • de la Serna, I.L., Ohkawa, Y., Berkes, C.A., Bergstrom, D.A., Dacwag, C.S., Tapscott, S.J., and Imbalzano, A.N. (2005). MyoD targets chromatin complexes to the myogenin locus prior to forming a stable DNA bound complex. Mol. Cell. Biol. 25, 3997–4009.

    Article  PubMed  Google Scholar 

  • Dey, A., Chitsaz, F., Abbasi, A., Misteli, T., and Ozato, K. (2003). The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis. Proc. Natl. Acad. Sci. USA 100, 8758–8763.

    Article  PubMed  CAS  Google Scholar 

  • Dilworth, F.J., Seaver, K.J., Fishburn, A.L., Htet, S.L., and Tapscott, S.J. (2004). In vitro transcription system delineates the distinct roles of the coactivators pCAF and p300 during MyoD/E47-dependent transactivation. Proc. Natl. Acad. Sci. USA 101, 11593–11598.

    Article  PubMed  CAS  Google Scholar 

  • Edmondson, D.G., and Olson, E.N. (1989). A gene with homology to the myc similarity region of MyoD1 is expressed during myogenesis and is sufficient to activate the muscle differentiation program. Genes Dev. 3, 628–640.

    Article  PubMed  CAS  Google Scholar 

  • Edmondson, D.G., Cheng, T.C., Cserjesi, P., Chakraborty, T., and Olson, E.N. (1992). Analysis of the myogenin promoter reveals an indirect pathway for positive autoregulation mediated by the muscle-specific enhancer factor MEF-2. Mol. Cell. Biol. 12, 3665–3677.

    PubMed  CAS  Google Scholar 

  • Gerber, A.N., Klesert, T.R., Bergstrom, D.A., and Tapscott, S.J. (1997). Two domains of MyoD mediate transcriptional activation of genes in repressive chromatin: a mechanism for lineage determination in myogenesis. Genes Dev. 11, 436–450.

    Article  PubMed  CAS  Google Scholar 

  • Gong, M., Ni, J.H., and Jia, H.T. (2002). Increased exchange rate of histone H1 on chromatin by exogenous myogenin expression. Cell Res. 12, 395–400.

    Article  PubMed  Google Scholar 

  • Hasty, P., Bradley, A., Morris, J.H., Edmondson, D.G., Venuti, J.M., Olson, E.N., and Klein, W.H. (1993). Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 364, 501–506.

    Article  PubMed  CAS  Google Scholar 

  • Hatoum, O.A., Gross-Mesilaty, S., Breitschopf, K., Hoffman, A., Gonen, H., Ciechanover, A., and Bengal, E. (1998). Degradation of the myogenic transcription factor MyoD by the ubiquitin pathway in vivo and in vitro: regulation by specific DNA binding. Mol. Cell. Biol. 18, 5670–5677.

    PubMed  CAS  Google Scholar 

  • Jang, M.K., Mochizuki, K., Zhou, M., Jeong, H.S., Brady, J.N., and Ozato, K. (2005). The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol. Cell 19, 523–534.

    Article  PubMed  CAS  Google Scholar 

  • Ji, Z.X., Du, C., Wu, G.S., Li, S.Y., An, G.S., Yang, Y.X., Jia, R., Jia, H.T., and Ni, J.H. (2009). Synergistic up-regulation of muscle LIM protein expression in C2C12 and NIH3T3 cells by myogenin and MEF2C. Mol. Genet. Genomics 281, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, L.A., Tapscott, S.J., and Eisen, H. (1992). Sodium butyrate inhibits myogenesis by interfering with the transcriptional activation function of MyoD and myogenin. Mol. Cell. Biol. 12, 5123–5130.

    PubMed  CAS  Google Scholar 

  • Kassar-Duchossoy, L., Gayraud-Morel, B., Gomes, D., Rocancourt, D., Buckingham, M., Shinin, V., and Tajbakhsh, S. (2004). Mrf4 determines skeletal muscle identitiy in Myf5: MyoD doublemutant mice. Nature 431, 466–471.

    Article  PubMed  CAS  Google Scholar 

  • Kitzmann, M., Carnac, G., Vandromme, M., Primig, M., Lamb, N.J. C., and Fernandez, A. (1998). The muscle regulatory factors MyoD and Myf-5 undergo distinct cell cycle-specific expression in muscle cells. J. Cell Biol. 142, 1447–1459.

    Article  PubMed  CAS  Google Scholar 

  • Lu, P.Y., Taylor, M., Jia, H.T., and Ni, J.H. (2004). Muscle LIM protein promotes expression of the acetylcholine receptor Γ-subunit gene cooperatively with the myogenin-E12 complex. Cell. Mol. Life Sci. 61, 2386–2392.

    Article  PubMed  CAS  Google Scholar 

  • Nabeshima, Y., Hanaoka, K., Hayasaka, M., Esuml, E., Li, S., Nonaka, I., and Nabeshima, Y. (1993). Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature 364, 532–535.

    Article  PubMed  CAS  Google Scholar 

  • Nojima, M., Huang, Y., Tyagi, M., Kao, H.Y., and Fu**aga, K. (2008). The positive transcription elongation factor b is an essential cofactor for the activation of transcription by myocyte enhancer factor 2. J. Mol. Biol. 382, 275–287.

    Article  PubMed  CAS  Google Scholar 

  • Ohkawa, Y., Marfella, C.G., and Imbalzano, A.N. (2006). Skeletal muscle specification by myogenin and Mef2D via the SWI/SNF ATPase Brg1. EMBO J. 25, 490–501.

    Article  PubMed  CAS  Google Scholar 

  • Olson, E.N., and Klein, W.H. (1994). bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes Dev. 8, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Penn, B.H., Bergstrom, D.A., Dilworth, F.J., Bengal, E., and Tapscott, S.J. (2004). A MyoD-generated feed-forward circuit temporally patterns gene expression during skeletal muscle differentiation. Genes Dev. 18, 2348–2353.

    Article  PubMed  CAS  Google Scholar 

  • Peterlin, B.M., and Price, D.H. (2006). Controlling the elongation phase of transcription with P-TEFb. Mol. Cell 23, 297–305.

    Article  PubMed  CAS  Google Scholar 

  • Plesko, M.M., Hargrove, J.L., Granner, D.K., and Chalkley, R. (1983). Inhibition by sodium butyrate of enzyme induction by glucocorticoids and dibutyryl cyclic AMP. J. Biol. Chem. 258, 13738–13744.

    PubMed  CAS  Google Scholar 

  • Rahl, P.B., Lin, C.Y., Seila, A.C., Flynn, R.A., McCuine, S., Burge, C.B., Sharp, P.A., and Young, R.A. (2010). c-Myc regulates transcriptional pause release. Cell 141, 432–445.

    Article  PubMed  CAS  Google Scholar 

  • Rahman, S., Sowa, M.E., Ottinger, M., Smith, J.A., Shi, Y., Harper, J.W., and Howley, P.M. (2011). The Brd4 extraterminal domain confers transcription activation independent of pTEFb by recruiting multiple proteins, including NSD3. Mol. Cell. Biol. 31, 2641–2652.

    Article  PubMed  CAS  Google Scholar 

  • Rawls, A., Morris, J.H., Rudnicki, M., Braun, T., Arnold, H.H., Klein, W.H., and Olson, E.N. (1995). Myogenin’s functions do not overlap with those of MyoD or Myf-5 during mouse embryogenesis. Dev. Biol. 172, 37–50.

    Article  PubMed  CAS  Google Scholar 

  • Rudnicki, M.A., Schnegelsberg, P.N., Stead, R.H., Braun, T., Arnold, H.H., and Jaenisch, R. (1993). MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75, 1351–1359.

    Article  PubMed  CAS  Google Scholar 

  • Saunders, A., Core, L.J., and Lis, J.T. (2006). Breaking barriers to transcription elongation. Nat. Rev. Mol. Cell. Biol. 7, 557–567.

    Article  PubMed  CAS  Google Scholar 

  • Simone, C., Forcales, S.V., Hill, D.A., Imbalzano, A.N., Latella, L., and Puri, P.L. (2004) p38 pathway targets SWI-SNF chromatin-remodeling complex to muscle-specific loci. Nat. Genet. 36, 738–743.

    Article  PubMed  CAS  Google Scholar 

  • Tapscott, S.J. (2005). The circuitry of a master switch: Myod and the regulation of skeletal muscle gene transcription. Development 132, 2685–2695.

    Article  PubMed  CAS  Google Scholar 

  • Thayer, M.J., Tapscott, S.J., Davis, R.L., Wright, W.E., Lassar, A.B., and Weintraub, H. (1989). Positive autoregulation of the myogenic determination gene MyoD1. Cell 58, 241–248.

    Article  PubMed  CAS  Google Scholar 

  • Venuti, J.M., Morris, J.H., Vivian, J.L., Olson, E.N., and Klein, W.H. (1995). Myogenin is required for late but not early aspects of myogenesis during mouse development. J. Cell Biol. 128, 563–576.

    Article  PubMed  CAS  Google Scholar 

  • Weintraub, H. (1993). The MyoD family and myogenesis: redundancy, networks, and thresholds. Cell 75, 1241–1244.

    Article  PubMed  CAS  Google Scholar 

  • Wright, W.E., Sassoon, D.A., and Lin, V.K. (1989). Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell 56, 607–617.

    Article  PubMed  CAS  Google Scholar 

  • Wu, S.Y., and Chiang, C.M. (2007). The double bromodomain containing chromatin adaptor Brd4 and transcriptional regulation. J. Biol. Chem. 282, 13141–13145.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Z., Yik, J.H., Chen, R., He, N., Jang, M.K., Ozato, K., and Zhou, Q. (2005). Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol. Cell 19, 535–545.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H.J., Li, W.J., Gu, Y.Y., Li, S.Y., An, G.S., Ni, J.H., and Jia, H.T. (2010). p14ARF interacts with E2F factors to form p14ARFE2F/partner-DNA complexes repressing E2F-dependent transcription. J. Cell Biochem. 109, 693–701.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju-Hua Ni.

About this article

Cite this article

Du, C., **, YQ., Qi, JJ. et al. Effects of myogenin on expression of late muscle genes through MyoD-dependent chromatin remodeling ability of myogenin. Mol Cells 34, 133–142 (2012). https://doi.org/10.1007/s10059-012-2286-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-012-2286-1

Keywords

Navigation