Log in

Synchronization of cell cycle of Saccharomyces cerevisiae by using a cell chip platform

  • Published:
Molecules and Cells

Abstract

Cell synchrony is a critical requirement for the study of eukaryotic cells. Although several chemical and genetic methods of cell cycle synchronization are currently available, they have certain limitations, such as unnecessary perturbations to cells. We developed a novel cell cycle synchronization method that is based on a cell chip platform. The budding yeast, Saccharomyces cerevisiae, is a simple but useful model system to study cell biology and shares many similar features with higher eukaryotic cells. Single yeast cells were individually captured in the wells of a specially designed cell chip platform. When released from the cell chip, the yeast cells were synchronized, with all cells in the G1 phase. This method is non-invasive and causes minimal chemical and biological damage to cells. The capture and release of cells using cells chips with microwells of specific dimensions allows for the isolation of cells of a particular size and shape; this enables the isolation of cells of a given phase, because the size and shape of yeast cells vary with the phase of the cell cycle. To test the viability of synchronized cells, the yeast cells captured in the cell chip platform were assessed for response to mating pheromone (α-factor). The synchronized cells isolated using the cell chip were capable of mediating the mating signaling response and exhibited a dynamic and robust response behavior. By changing the dimensions of the well of the cell chip, cells of other cell cycle phases can also be isolated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberghina, l., Rossi, R.L., Wanke, V., Querin, L., and Vanoni, M. (2003). Checking cell size in budding yeast: a systems biology approach. Ital. J. Biochem. 52, 55–57.

    PubMed  CAS  Google Scholar 

  • Austin, C.J., and Warren, L.G. (1983). Induced division synchrony in Entamoeba histolytica. Effects of hydroxyurea and serum deprivation. Am. J. Trop Med. Hyg. 32, 507–511.

    PubMed  CAS  Google Scholar 

  • Breeden, L.L. (1997). Alpha-factor synchronization of budding yeast. Methods Enzymol. 283, 332–341.

    Article  PubMed  CAS  Google Scholar 

  • Cho, R.J., Campbell, M.J., Winzeler, E.A., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T.G., Gabrielian, A.E., Landsman, D., Lockhart, D.J., et al. (1998). A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell 2, 65–73.

    Article  PubMed  CAS  Google Scholar 

  • Choi, M.Y., Kang, G.Y., Hur, J.Y., Jung, J.W., Kim, K.P., and Park, S.H. (2008). Analysis of dual phosphorylation of Hog1 MAP kinase in Saccharomyces cerevisiae using quantitative mass spectrometry. Mol. Cells 26, 200–205.

    PubMed  CAS  Google Scholar 

  • Colman-Lerner, A., Gordon, A., Serra, E., Chin, T., Resnekov, O., Endy, D., Pesce, C.G., and Brent, R. (2005). Regulated cell-to-cell variation in a cell-fate decision system. Nature 437, 699–706.

    Article  PubMed  CAS  Google Scholar 

  • Davis, P.K., Ho, A., and Dowdy, S.F. (2001). Biological methods for cell-cycle synchronization of mammalian cells. Biotechniques 30, 1322–1326, 1328, 1330–1321.

    PubMed  CAS  Google Scholar 

  • Day, A., Schneider, C., and Schneider, B.L. (2004). Yeast cell synchronization. Methods Mol. Biol. 241, 55–76.

    PubMed  Google Scholar 

  • Dong, D., Shao, X., Deng, N., and Zhang, Z. (2011). Gene expression variations are predictive for stochastic noise. Nucleic Acids Res. 39, 403–413.

    Article  PubMed  CAS  Google Scholar 

  • Elledge, S.J., Zhou, Z., Allen, J.B., and Navas, T.A. (1993). DNA damage and cell cycle regulation of ribonucleotide reductase. Bioessays 15, 333–339.

    Article  PubMed  CAS  Google Scholar 

  • Futcher, B. (1999). Cell cycle synchronization. Methods Cell Sci. 21, 79–86.

    Article  PubMed  CAS  Google Scholar 

  • Haase, S.B., and Reed, S.I. (2002). Improved flow cytometric analysis of the budding yeast cell cycle. Cell Cycle 1, 132–136.

    Article  PubMed  CAS  Google Scholar 

  • Hanrahan, J., and Snyder, M. (2003). Cytoskeletal activation of a checkpoint kinase. Mol. Cell 12, 663–673.

    Article  PubMed  CAS  Google Scholar 

  • Hartwell, L.H., Culotti, J., and Reid, B. (1970). Genetic control of the cell-division cycle in yeast. I. Detection of mutants. Proc. Natl. Acad. Sci. USA 66, 352–359.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, R.A., and Hansen, W.P. (1981). Immunofluorescent analysis of blood cells by flow cytometry. Int. J. Immunopharmacol. 3, 249–254.

    Article  PubMed  CAS  Google Scholar 

  • Hur, J.Y., Kang, G.Y., Choi, M.Y., Jung, J.W., Kim, K.P., and Park, S.H. (2008). Quantitative profiling of dual phosphorylation of Fus3 MAP kinase in Saccharomyces cerevisiae. Mol. Cells 26, 41–47.

    PubMed  CAS  Google Scholar 

  • Jacobs, C.W., Adams, A.E., Szaniszlo, P.J., and Pringle, J.R. (1988) Functions of microtubules in the Saccharomyces cerevisiae cell cycle. J. Cell Biol. 107, 1409–1426.

    Article  PubMed  CAS  Google Scholar 

  • Jeong, J.W., Kim, D.H., Choi, S.Y., and Kim, H.B. (2001) Characterization of the CDC10 product and the timing of events of the budding site of Saccharomyces cerevisiae. Mol. Cells 12, 77–83.

    PubMed  CAS  Google Scholar 

  • Karpova, T.S., McNally, J.G., Moltz, S.L., and Cooper, J.A. (1998) Assembly and function of the actin cytoskeleton of yeast: relationships between cables and patches. J. Cell Biol. 142, 1501–1517.

    Article  PubMed  CAS  Google Scholar 

  • Krylov, D.M., Nasmyth, K., and Koonin, E.V. (2003). Evolution of eukaryotic cell cycle regulation: stepwise addition of regulatory kinases and late advent of the CDKs. Curr. Biol. 13, 173–177.

    Article  PubMed  CAS  Google Scholar 

  • Lee, W.C., Bhagat, A.A.S., Huang, S., Van Vliet, K.J., Han, J., and Lim, C.T. (2011). High-throughput cell cycle synchronization using inertial forces in spiral microchannels. Lab. Chip 11, 1359–1367.

    Article  PubMed  CAS  Google Scholar 

  • Margolis, L.B. (1970). Synchronization of the processes in the cell cycle. Tsitologiia 12, 697–712.

    PubMed  CAS  Google Scholar 

  • McEwen, C.R., Stallard, R.W., and Juhos, E.T. (1968). Separation of biological particles by centrifugal elutriation. Anal. Biochem. 23, 369–377.

    Article  PubMed  CAS  Google Scholar 

  • Merrill, G.F. (1998). Cell synchronization. Methods Cell Biol. 57, 229–249.

    Article  PubMed  CAS  Google Scholar 

  • Mitchison, J.M., and Creanor, J. (1971). Induction synchrony in the fission yeast. Schizosaccharomyces pombe. Exp. Cell Res. 67, 368–374.

    Article  PubMed  CAS  Google Scholar 

  • Nasmyth, K. (1995). Evolution of the cell cycle. Philos. Trans. R. Soc. Lond. B Biol. Sci. 349, 271–281.

    Article  PubMed  CAS  Google Scholar 

  • Nasmyth, K. (1996). At the heart of the budding yeast cell cycle. Trends Genet. 12, 405–412.

    Article  PubMed  CAS  Google Scholar 

  • Novak, B., Csikasz-Nagy, A., Gyorffy, B., Nasmyth, K., and Tyson, J.J. (1998). Model scenarios for evolution of the eukaryotic cell cycle. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353, 2063–2076.

    Article  PubMed  CAS  Google Scholar 

  • Park, S.H., Zarrinpar, A., and Lim, W.A. (2003). Rewiring MAP kinase pathways using alternative scaffold assembly mechanisms. Science 299, 1061–1064.

    Article  PubMed  CAS  Google Scholar 

  • Park, K.A., Tanaka, Y., Suenaga, Y., and Tamura, T.A. (2006a) TATA-binding protein-related factor 2 is localized in the cytoplasm of mammalian cells and much of it migrates to the nucleus in response to genotoxic agents. Mol. Cells 22, 203–209.

    PubMed  CAS  Google Scholar 

  • Park, M.C., Hur, J.Y., Kwon, K.W., Park, S.H., and Suh, K.Y. (2006b). Pumpless, selective docking of yeast cells inside a microfluidic channel induced by receding meniscus. Lab. Chip 6, 988–994.

    Article  PubMed  CAS  Google Scholar 

  • Park, M.C., Hur, J.Y., Cho, H.S., Park, S.H., and Suh, K.Y. (2011). High-throughput single-cell quantification using simple microwell-based cell docking and programmable time-course live-cell imaging. Lab. Chip 11, 79–86.

    Article  PubMed  CAS  Google Scholar 

  • Raser, J.M., and O’shea, E.K. (2004). Control of stochasticity in eukaryotic gene expression. Science 304, 1811–1814.

    Article  PubMed  CAS  Google Scholar 

  • Reid, B.J., and Hartwell, L.H. (1977). Regulation of mating in the cell cycle of Saccharomyces cerevisiae. J. Cell Biol. 75, 355–365.

    Article  PubMed  CAS  Google Scholar 

  • Rupes, I. (2002). Checking cell size in yeast. Trends Genet. 18, 479–485.

    Article  PubMed  CAS  Google Scholar 

  • Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., and Futcher, B. (1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297.

    PubMed  CAS  Google Scholar 

  • Tanaka, T., Umemori, T., Endo, S., Muramatsu, S., Kanemaki, M., Kamimura, Y., Obuse, C., and Araki, H. (2011). Sld7, an Sld3-associated protein required for efficient chromosomal DNA replication in budding yeast. EMBO J. 30, 2019–2030.

    Article  PubMed  CAS  Google Scholar 

  • Wahl, L.M., Wahl, S.M., Smythies, L.E., and Smith, P.D. (2006). Isolation of human monocyte populations. Curr. Protoc. Immunol. Chapter 7, Unit 7 6A.

  • Walker, G.M. (1999). Synchronization of yeast cell populations. Methods Cell Sci. 21, 87–93.

    Article  PubMed  CAS  Google Scholar 

  • Wyrick, J.J., Holstege, F.C., Jennings, E.G., Causton, H.C., Shore, D., Grunstein, M., Lander, E.S., and Young, R.A. (1999). Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast. Nature 402, 418–421.

    Article  PubMed  CAS  Google Scholar 

  • Zou, Y., and Bi, X. (2008). Positive roles of SAS2 in DNA replication and transcriptional silencing in yeast. Nucleic Acids Res. 36, 5189–5200.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Hyun Park.

About this article

Cite this article

Hur, J.Y., Park, M.C., Suh, KY. et al. Synchronization of cell cycle of Saccharomyces cerevisiae by using a cell chip platform. Mol Cells 32, 483–488 (2011). https://doi.org/10.1007/s10059-011-0174-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-011-0174-8

Keywords

Navigation