Log in

Altered expression of pyrophosphate: Fructose-6-phosphate 1-phosphotransferase affects the growth of transgenic Arabidopsis plants

  • Published:
Molecules and Cells

Abstract

Pyrophosphate: fructose-6-phosphate 1-phosphotransferase (PFP) catalyzes the reversible interconversion of fructose-6-phosphate and fructose-1,6-bisphosphate, a key step in the regulation of the metabolic flux toward glycolysis or gluconeogenesis. To examine the role of PFP in plant growth, we have generated transgenic Arabidopsis plants that either overexpress or repress Arabidopsis PFP sub-unit genes. The overexpressing lines displayed increased PFP activity and slightly faster growth relative to wild type plants, although their photosynthetic activities and the levels of metabolites appeared not to have significantly changed. In contrast, the RNAi lines showed significantly retarded growth in parallel with the reduced PFP activity. Analysis of photosynthetic activity revealed that the growth retardation phenotype of the RNAi lines was accompanied by the reduced rates of CO2 assimilation. Microarray analysis of our transgenic plants further revealed that the altered expression of AtPFPβ affects the expression of several genes involved in diverse physiological processes. Our current data thus suggest that PFP is important in carbohydrate metabolism and other cellular processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ap Rees, T., Green, J.H., and Wilson, P.M. (1985). Pyrophosphate: fructose 6-phosphate 1-phosphotransferase and glycolysis in non-photosynthetic tissues of higher plants. Biochem. J. 227, 299–304.

    Google Scholar 

  • Baek, I.-S., Park, H.-Y., You, M.K., Lee, J.H., and Kim, J.-K. (2008). Functional conservation and divergence ot FVE genes that control flowering time and cold response in rice and Arabidopsis. Mol. Cells 26, 368–372.

    PubMed  CAS  Google Scholar 

  • Carlisle, S.M., Blakeley, S.D., Hemmingsen, S.M., Trevanion, S.J., Hiyoshi, T., Kruger, N.J., and Dennis, D.T (1990). Pyrophosphate-dependent phosphofructokinase. Conservation of protein sequence between the α- and β-subunits and with the ATP-dependent phosphofructokinase. J. Biol. Chem. 265, 18366–18371.

    PubMed  CAS  Google Scholar 

  • Camal, N.W., and Black, C.C. (1989). Soluble sugars as the carbohydrate reserve for CAM in pineapple leaves. Implications for the role of pyrophosphate: 6-phosphofructokinase in glycolysis. Plant Physiol. 90, 91–100.

    Article  Google Scholar 

  • Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743.

    Article  PubMed  CAS  Google Scholar 

  • Cseke, C., Weeden, N.F., Buchanan, B.B., and Uyeda, K. (1982). A special fructose bisphosphate functions as a cytoplasmic regulatory metabolite in green leaves. Proc. Natl. Acad. Sci. USA 79, 4322–4326.

    Article  PubMed  CAS  Google Scholar 

  • Dennis, D.T., and Greyson, M.F. (1987). Fructose-6-phosphate metabolism in plants. Physiol. Plantarum. 69, 395–404.

    Article  CAS  Google Scholar 

  • Fernie, A.R., Tauberger, E., Lytovchenko, A., Roessner, U., Willmitzer, L., and Trethewey, R.N. (2002). Antisense repression of cytosolic phosphoglucomutase in potato (Solanum tuberosum) results in severe growth retardation, reduction in tuber number and altered carbon metabolism. Planta 214, 510–520.

    Article  PubMed  CAS  Google Scholar 

  • Grant, J.J., Chini, A., Basu, D., and Loake, G.J. (2003). Targeted activation tagging of the Arabidopsis NBS-LRR gene, ADR1, conveys resistance to virulent pathogens. Mol. Plant Microbe Interact. 16, 669–680.

    Article  PubMed  CAS  Google Scholar 

  • Groenewald J.H., and Botha F.C. (2008). Down-regulation of pyrophosphate:fructose 6-phosphate 1-phosphotransferase (PFP) activity in sugarcane enhances sucrose accumulation in immature internodes. Transgenic Res. 17, 85–92.

    Article  PubMed  CAS  Google Scholar 

  • Hajdukiewicz, P., Svab, Z., and Maliga, P. (1994). The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol. Biol. 25, 989–994.

    Article  PubMed  CAS  Google Scholar 

  • Hajirezaei, M., Sonnewald, U., Viola, R., Carlisle, S., Dennis, D., and Stitt, M. (1994). Transgenic potato plants with strongly decreased egression of pyrophosphate:fructose-6-phosphate phosphotransferase show no visible phenotype and only minor changes in metabolic fluxes in their tubers. Planta 192, 16–30.

    CAS  Google Scholar 

  • Hatzfeld, W.-D., Dancer, J., and Stitt, M. (1989). Direct evidence that pyrophosphate:fructose-6-phosphate phosphotransferase can act as a glycolytic enzyme in plants. FEBS Lett. 254, 215–218.

    Article  CAS  Google Scholar 

  • Hatzfeld, W.-D., Dancer, J., and Stitt, M. (1990). Fructose-2,6-bisphosphate, metabolites and ‘coarse’ control of pyrophosphate: fructose-6-phosphate phosphotransferase during triosephosphate cycling in heterotrophic cell-suspension cultures of Chenopodium rubrum. Planta 180, 205–211.

    CAS  Google Scholar 

  • Hue, L., and Rider, M.H. (1987). Role of fructose 2,6-bisphosphate in the control of glycolysis in mammalian tissues. Biochem. J. 245, 313–324.

    PubMed  CAS  Google Scholar 

  • Kowalczyk, S. (1987). The characteristics of pyrophosphate: D-fructose-6-phosphate 1-phosphotransferases from Sansevieria trifasciata leaves and Phaseolus coccineus stems. Acta Biochim. Pol. 34, 253–268.

    PubMed  CAS  Google Scholar 

  • Kruger, N.J., and Dennis, D.T. (1987). Molecular properties of pyrophosphate:fructose-6-phosphate phosphotransferase from potato tuber. Arch. Biochem. Biophys. 256, 273–279.

    Article  PubMed  CAS  Google Scholar 

  • Kubota, K., and Ashihara, H. (1990). Identification of non-equilibrium glycolytic reactions in suspension-cultured plant cells. Biochim. Biophys. Acta 1036, 138–142.

    PubMed  CAS  Google Scholar 

  • Lu, Y., and Sharkey, T.D. (2004). The role of amylomaltase in maltose metabolism in the cytosol of photosynthetic cells. Planta 218, 466–473.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y.H., Lee, D.S., Lim, J.M., Yoon, J.M., Bhoo, S.H., Jeon, J.-S., and Hahn, T.-R. (2006). Carbon-partitioning in Arabidopsis is regulated by the fructose 6-phosphate, 2-kinase/fructose 2,6-bisphosphatase enzyme. J. Plant Biol. 49, 70–79.

    Article  CAS  Google Scholar 

  • Mertens, E., Larondelle, Y., and Hers, H.-G. (1990). Induction of pyrophosphate:fructose 6-phosphate 1-phosphotransferase by anoxia in rice seedlings. Plant Physiol. 93, 584–587.

    Article  PubMed  CAS  Google Scholar 

  • Mustroph, A., Albrecht, G., Hajirezaei, M., Grimm, B., and Biemelt, S. (2005). Low levels of pyrophosphate in transgenic potato plants expressing E. coli pyrophosphatase lead to decreased vitality under oxygen deficiency. Ann. Bot. 96, 717–726.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, N., Suzuki, Y., and Suzuki, H. (1992). Pyrophosphate-dependent phosphofructokinase from pollen: properties and possible roles in sugar metabolism. Physiol. Plantarum 86, 616–622.

    Article  CAS  Google Scholar 

  • Nielsen, T.H. (1994). Pyrophosphate:fructose-6-phosphate 1-phosphotransferase from barley seedlings. Isolation, subunit composition and kinetic characterization. Physiol. Plantarum 92, 311–321.

    Article  CAS  Google Scholar 

  • Nielsen, T.H., and Stitt, M. (2001). Tobacco transformants with strongly decreased expression of pyrophosphate:fructose-6-phosphate expression in the base of their young growing leaves contain much higher levels of fructose-2,6-bisphosphate but no major changes in fluxes. Planta 214, 106–116.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, T.H., Rung, J.H., and Villadsen, D. (2004). Fructose-2,6-bisphosphate: a traffic signal in plant metabolism. Trends Plant Sci. 9, 556–563.

    Article  PubMed  CAS  Google Scholar 

  • Park, S., Cho, M.-H., Bhoo, S.H., Jeon, J.-S., Kwon, Y.-K., and Hahn, T.-R. (2007). Altered sucrose synthesis in rice plants with reduced activity of fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase. J. Plant Biol. 50, 38–43.

    Article  CAS  Google Scholar 

  • Paul, M., Sonnewald, U., Hajirezaei, M., Dennis, D., and Sitt, M. (1995). Transgenic tobacco plants with strongly decreased expression of pyrophosphate:fructose-6-phosphate 1-phosphotransferase do not differ significantly from wild type in photosynthate partitioning, plant growth or their ability to cope with limiting phosphate, limiting nitrogen and suboptimal temperatures. Planta 196, 277–283.

    Article  CAS  Google Scholar 

  • Plaxton, W.C. (1996). The organization and regulation of plant glycolysis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 185–214.

    Article  PubMed  CAS  Google Scholar 

  • Ratcliffe, O.J., Kumimoto, R.W., Wong, B.J., and Riechmann, J.L. (2003). Analysis of the Arabidopsis MADS AFFECTING FLOWERING gene family: MAF2 prevents vernalization by short periods of cold. Plant Cell 15, 1159–1169.

    Article  PubMed  CAS  Google Scholar 

  • Rowland, O., Zheng, H., Hepworth, S.R., Lam, P., Jetter, R., and Kunst, L. (2006). CER4 encodes an alcohol-forming fatty acyl-coenzyme A reductase involved in cuticular wax production in Arabidopsis. Plant Physiol. 142, 866–877.

    Article  PubMed  CAS  Google Scholar 

  • Smyth, D.A., and Black, C.C. (1984). Measurement of the pyrophosphate content of plant tissues. Plant Physiol. 75, 862–864.

    Article  PubMed  CAS  Google Scholar 

  • Snustad, D.P., Haas, N.A., Kopczak, S.D., and Silflow C.D. (1992). The small genome of Arabidopsis contains at least nine expressed β-tubulin genes. Plant Cell 4, 549–556.

    Article  PubMed  CAS  Google Scholar 

  • Stitt, M. (1990). Fructose-2,6-bisphosphate as a regulatory molecule in plants. Annu. Rev. Plant Physiol. Plant Biol. 41, 153–185.

    Article  CAS  Google Scholar 

  • Stitt, M., Lilley, R.M.C., Gerhardt, R., and Heldt, H.W. (1989). Determination of metabolite levels in specific cells and subcellular compartments of plant leaves. Method Enzymol. 174, 518–522.

    Article  CAS  Google Scholar 

  • Taji, T., Ohsumi, C., Iuchi, S., Seki, M., Kasuga, M., Kobayashi, M., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2002). Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J. 29, 417–426.

    Article  PubMed  CAS  Google Scholar 

  • Theodorou, M.E., and Plaxton, W.C. (1996). Purification and characterization of pyrophosphate-dependent phosphofructokinase from phosphate-starved Brassica nigra suspension cells. Plant Physiol. 112, 343–351.

    Article  PubMed  CAS  Google Scholar 

  • Theodorou, M.E., Cornel, F.A., Duff, S.M., and Plaxton, W.C. (1992). Phosphate starvation-inducible synthesis of the α-subunit of the pyrophosphate-dependent phosphofructokinase in black mustard suspension cells. J. Biol. Chem. 267, 21901–21905.

    PubMed  CAS  Google Scholar 

  • Todd, J.F., Blakeley, S.D., and Dennis, D.T. (1995). Structure of the genes encoding the α- and β-subunits of castor pyrophosphate-dependent phosphofructokinase. Gene 152, 181–186.

    Article  PubMed  CAS  Google Scholar 

  • Turner, W.L., and Plaxton, W.C. (2003). Purification and characterization of pyrophosphate- and ATP-dependent phosphofructokinases from banana fruit. Planta 217, 113–121.

    PubMed  CAS  Google Scholar 

  • Van Schaftingen, E. (1987). Fructose 2,6-bisphosphate. Adv. Enzymol. Relat. Areas Mol. Biol. 59, 315–395.

    Article  PubMed  Google Scholar 

  • Van Schaftingen, E., Lederer, B., Bartrons, R., and Hers H.-G. (1982) A kinetic study of pyrophosphate:fructose-6-phosphate phosphotransferase from potato tubers; Application to a microassay of fructose-2,6-bisphosphate. Eur. J. Biochem. 129, 191–195.

    Article  PubMed  Google Scholar 

  • von Caemmerer, S., and Farquhar, G.D. (1981). Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153, 376–387.

    Article  Google Scholar 

  • Walters, R.G., Ibrahim, D.G., Horton, P., and Kruger, N.J. (2004). A mutant of Arabidopsis lacking the triose-phosphate/phosphate translocator reveals metabolic regulation of starch breakdown in the light. Plant Physiol. 135, 891–906.

    Article  PubMed  CAS  Google Scholar 

  • Weiner, H., Stitt, M., and Heldt, H.W. (1987). Subcellular compartmentation of pyrophosphate and alkaline pyrophosphatase in leaves. Biochim. Biophys. Acta 893, 13–21.

    Article  CAS  Google Scholar 

  • Wong, J.H., Kiss, F, Wu, M.-X., and Buchanan, B.B. (1990). Pyrophosphate fructose-6-P 1-phosphotransferase from tomato fruit. Evidence for change during ripening. Plant Physiol. 94, 499–506.

    Article  PubMed  CAS  Google Scholar 

  • Wood, H.G. (1985). Inorganic pyrophosphate and polyphosphates as sources of energy. Curr. Top. Cell Regul. 26, 355–369.

    PubMed  CAS  Google Scholar 

  • Yan, T.-F.J., and Tao, M. (1984). Multiple forms of pyrophosphate:D-fructose-6-phosphate 1-phosphotransferase from wheat seedlings. Regulation by fructose 2,6-bisphosphate. J. Biol. Chem. 259, 5087–5092.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Ryong Hahn.

Additional information

These authors contributed equally to this study.

About this article

Cite this article

Lim, H., Cho, MH., Jeon, JS. et al. Altered expression of pyrophosphate: Fructose-6-phosphate 1-phosphotransferase affects the growth of transgenic Arabidopsis plants. Mol Cells 27, 641–649 (2009). https://doi.org/10.1007/s10059-009-0085-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-009-0085-0

Keywords

Navigation