Log in

Long-distance control of nodulation: Molecules and models

  • Minireview
  • Published:
Molecules and Cells

Abstract

Legume plants develop root nodules to recruit nitrogen-fixing bacteria called rhizobia. This symbiotic relationship allows the host plants to grow even under nitrogen limiting environment. Since nodule development is an energetically expensive process, the number of nodules should be tightly controlled by the host plants. For this purpose, legume plants utilize a long-distance signaling known as autoregulation of nodulation (AON). AON signaling in legumes has been extensively studied over decades but the underlying molecular mechanism had been largely unclear until recently. With the advent of the model legumes, L. japonicus and M. truncatula, we have been seeing a great progress including isolation of the AON-associated receptor kinase. Here, we summarize recent studies on AON and discuss an updated view of the long-distance control of nodulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Combier, J.P., Küster, H., Journet, E.P., Hohnjec, N., Gamas, P., and Niebel, A. (2008). Evidence for the involvement in nodulation of the two small putative regulatory peptide-encoding genes MtRALFU and MtDVU. Mol. Plant Microbe. Interact. 21, 1118–1127.

    Article  PubMed  CAS  Google Scholar 

  • Delves, A.C., Mathews, A., Day, D.A., Carter, A.S., Carroll, B.J., and Gresshoff, P.M. (1986). Regulation of the soybean-Rhizobium nodule symbiosis by shoot and root factors. Plant Physiol. 82, 588–590.

    Article  PubMed  Google Scholar 

  • D’Haeze, W., and Holsters, M. (2002). Nod factor structures, responses, and perception during initiation of nodule development. Glycobiology 12, 79–105.

    Article  Google Scholar 

  • Diévart, A., Dalal, M., Tax, F.E., Lacey, A.D., Huttly, A., Li, J., and Clark, S.E. (2003). CLAVATA1 dominant-negative alleles reveal functional overlap between multiple receptor kinases that regulate meristem and organ development. Plant Cell 15, 1198–1211.

    Article  PubMed  Google Scholar 

  • Geurts, R., Fedorova, E., and Bisseling, T. (2005). Nod factor signaling genes and their function in the early stages of Rhizobium infection. Curr. Opin. Plant Biol. 8, 346–352.

    Article  PubMed  CAS  Google Scholar 

  • Gleason, C., Chaudhuri, S., Yang, T., Muñoz, A., Poovaiah, B.W., and Oldroyd, G.E. (2006). Nodulation independent of rhizobia induced by a calcium-activated kinase lacking autoinhibition. Nature 441, 1149–1152.

    Article  PubMed  CAS  Google Scholar 

  • Heckmann, A.B., Lombardo, F., Miwa, H., Perry, J.A., Bunnewell, S., Parniske, M., Wang, T.L., and Downie, J.A. (2006). Lotus japonicus nodulation requires two GRAS domain regulators, one of which is functionally conserved in a non-legume. Plant Physiol. 142, 1739–1750.

    Article  PubMed  CAS  Google Scholar 

  • Kaló, P., Gleason, C, Edwards, A., Marsh, J., Mitra, R.M., Hirsch, S., Jakab, J., Sims, S., Long, S.R., Rogers, J., et al. (2005). Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators. Science 308, 1786–1789.

    Article  PubMed  Google Scholar 

  • Kawaguchi, M., Imaizumi-Anraku, H., Koiwa, H., Niwa, S., Ikuta, A., Syono, K., and Akao, S. (2002). Root, root hair, and symbiotic mutants of the model legume Lotus japonicus. Mol. Plant-Microbe Interact. 15, 17–26.

    Article  PubMed  CAS  Google Scholar 

  • Kinkema, M., and Gresshoff, P.M. (2008). Investigation of downstream signals of the soybean autoregulation of nodulation receptor kinase GmNARK. Mol. Plant-Microbe Interact. 21, 1337–1348.

    Article  PubMed  CAS  Google Scholar 

  • Kosslak, R.M., and Bohlool, B.B. (1984). Suppression of nodule development of one side of a split-root system of soybeans caused by prior inoculation of the other side. Plant Physiol. 75, 125–130.

    Article  PubMed  Google Scholar 

  • Krusell, L, Madsen, L.H., Sato, S., Aubert, G., Genua, A, Szczy-glowski, K., Due, G., Kaneko, T., Tabata, S., de Bruijn, F., et al. (2002). Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature 420, 422–426.

    Article  PubMed  CAS  Google Scholar 

  • Lévy, J., Bres, C, Geurts, R., Chalhoub, B., Kulikova, O., Due, G., Journet, E.P., Ané, J.M., Lauber, E., Bisseling, T., et al. (2004). A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303, 1361–1364.

    Article  PubMed  Google Scholar 

  • Lough, T.J., and Lucas, W.J. (2006). Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annu. Rev. Plant Biol. 57, 203–232.

    Article  PubMed  CAS  Google Scholar 

  • Madsen, E.B., Madsen, L.H., Radutoiu, S., Olbtyt, M., Rakwalska, M., Szczyglowski, K., Sato, S., Kaneko, T., Tabata, S., Sandal, N., et al. (2003). A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425, 637–640.

    Article  PubMed  CAS  Google Scholar 

  • Magori, S., Oka-Kira, E., Shibata, S., Umehara, Y., Kouchi, H., Hase, Y, Tanaka, A., Sato, S., Tabata, S., and Kawaguchi, M. (2009). TOO MUCH LOVE, a root regulator associated with the long-distance control of nodulation in Lotus japonicus. Mol. Plant-Microbe Interact, (in press).

  • Malik, N.S., and Bauer, W.D. (1988). When does the self-regulatory response elicited in soybean root after Inoculation occur? Plant Physiol. 88, 537–539.

    Article  PubMed  Google Scholar 

  • Mitra, R.M., Gleason, C.A., Edwards, A., Hadfield, J., Downie, J.A., Oldroyd, G.E., and Long, S.R. (2004). A Ca2/calmodulin-dependent protein kinase required for symbiotic nodule development: Gene identification by transcript-based cloning. Proc. Natl. Acad. Sci. USA 101, 4701–4705.

    Article  PubMed  CAS  Google Scholar 

  • Miwa, H., Betsuyaku, S., Iwamoto, K, Kinoshita, A, Fukuda, H., and Sawa, S. (2008). The receptor-like kinase SOL2 mediates CLE signaling in Arabidopsis. Plant Cell Physiol. 49, 1752–1757.

    Article  PubMed  CAS  Google Scholar 

  • Miyahara, A., Hirani, T.A., Oakes, M., Kereszt, A, Kobe, B., Djord-jevic, M.A., and Gresshoff, P.M. (2008). Soybean nodule autoregulation receptor kinase phosphorylates two kinase-associated protein phosphatases in vitro. J. Biol. Chem. 283, 25381–25391.

    Article  PubMed  CAS  Google Scholar 

  • Müller, R., Bleckmann, A, and Simon, R. (2008). The receptor kinase CORYNE of Arabidopsis transmits the stem cell-limiting signal CLAVATA3 independently of CLAVATA1. Plant Cell 20, 934–946.

    Article  PubMed  Google Scholar 

  • Murakami, Y., Miwa, H., Imaizumi-Anraku, H., Kouchi, H., Downie, J.A., Kawaguchi, M., and Kawasaki, S. (2006). Positional cloning identifies Lotus japonicus NSP2, a putative transcription factor of the GRAS family, required for NIN and ENOD40 gene expression in nodule initiation. DNA Res. 13, 255–265.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, T, and Kawaguchi, M. (2006). Shoot-applied MeJA suppresses root nodulation in Lotus japonicus. Plant Cell Physiol. 47, 176–180.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura, R., Hayashi, M., Wu, G.J., Kouchi, H., Imaizumi-Anraku, H., Murakami, Y., Kawasaki, S., Akao, S., Ohmori, M., Nagasawa, M., et al. (2002). HAR1 mediates systemic regulation of symbiotic organ development. Nature 420, 426–429.

    Article  PubMed  CAS  Google Scholar 

  • Nontachaiyapoom, S., Scott, P.T., Men, A.E., Kinkema, M., Schenk, P.M., and Gresshoff, P.M. (2007). Promoters of orthologous Glycine max and Lotus japonicus nodulation autoregulation genes interchangeably drive phloem-specific expression in transgenic plants. Mol. Plant-Microbe Interact. 20, 769–780.

    Article  PubMed  CAS  Google Scholar 

  • Nutman, P.S. (1952). Studies on the physiology of nodule formation. III. Experiments on the excision of root-tips and nodules. Ann. Bot. 16, 79–101.

    CAS  Google Scholar 

  • Ogawa, M., Shinohara, H., Sakagami, Y., and Matsubayashi, Y. (2008). Arabidopsis CLV3 peptide directly binds CLV1 ectodo-main. Science 319, 294.

    Article  PubMed  CAS  Google Scholar 

  • Oka-Kira, E., Tateno, K., Miura, K., Haga, T., Hayashi, M., Harada, K., Sato, S., Tabata, S., Shikazono, N., Tanaka, A., et al. (2005). klavier (klv), a novel hypernodulation mutant of Lotus japonicus affected in vascular tissue organization and floral induction. Plant J. 44, 505–515.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto, S., Ohnishi, E., Sato, S., Takahashi, H., Nakazono, M., Tabata, S., and Kawaguchi, M. (2009). Nod factor/nitrate-induced CLE genes that drive HAR1-mediated systemic regulation of nodulation. Plant Cell Physiol. 50, 67–77.

    Article  PubMed  CAS  Google Scholar 

  • Oldroyd, G.E., and Downie, J.A. (2008). Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu. Rev. Plant Biol. 59, 519–546.

    Article  PubMed  CAS  Google Scholar 

  • Pacios-Bras, C., Schlaman, H.R., Boot, K., Admiraal, P., Langerak, J.M., Stougaard, J., and Spaink, H.P. (2003) Auxin distribution in Lotus japonicus during root nodule development. Plant Mol. Biol. 52, 1169–1180.

    Article  PubMed  CAS  Google Scholar 

  • Penmetsa, R.V., and Cook, D.R. (1997). A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science 275, 527–530.

    Article  PubMed  CAS  Google Scholar 

  • Penmetsa, R.V., Frugoli, J.A., Smith, L.S., Long, S.R., and Cook, D.R. (2003). Dual genetic pathways controlling nodule number in Medicago truncatula. Plant Physiol. 131, 998–1008.

    Article  PubMed  CAS  Google Scholar 

  • Pierce, M., and Bauer, W.D. (1983). A rapid regulatory response governing nodulation in soybean. Plant Physiol. 73, 286–290.

    Article  PubMed  Google Scholar 

  • Postma, J.G., Jacobsen, E., and Feenstra, W. (1988). Three pea mutants with an altered nodulation studied by genetic analysis and grafting. J. Plant Physiol. 132, 424–430.

    Google Scholar 

  • Prayitno, J., Rolfe, B.G., and Mathesius, U. (2006). The Ethylene-insensitive sickle mutant of Medicago truncatula shows altered auxin transport regulation during nodulation. Plant Physiol. 142, 168–180.

    Article  PubMed  CAS  Google Scholar 

  • Radutoiu, S., Madsen, L.H., Madsen, E.B., Felle, H.H., Umehara, Y., Granlund, M., Sato, S., Nakamura, Y., Tabata, S., Sandal, N., et al. (2003). Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425, 585–592.

    Article  PubMed  CAS  Google Scholar 

  • Sagan, M., and Due, G. (1996). Sym28 and Sym29, two new genes involved in regulation of nodulation in pea (Pisum sativum L). Symbiosis 20, 229–245.

    Google Scholar 

  • Schnabel, E., Journet, E.P., de Carvalho-Niebel, F., Due, G., and Frugoli, J. (2005). The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length. Plant Mol. Biol. 58, 809–822.

    Article  PubMed  Google Scholar 

  • Searle, I.R., Men, A.E., Laniya, T.S., Buzas, D.M., Iturbe-Ormaetxe, I., Carroll, B.J., and Gresshoff, P.M. (2003). Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science 299, 109–112.

    Article  PubMed  CAS  Google Scholar 

  • Sheng, C., and Harper, J.E. (1997). Shoot versus root signal involvement in nodulation and vegetative growth in wild-type and hypernodulating soybean genotypes. Plant Physiol. 113, 825–831.

    PubMed  CAS  Google Scholar 

  • Smit, P., Raedts, J., Portyanko, V., Debellé, F., Gough, C., Bisseling, T., and Geurts, R. (2005). NSP1 of the GRAS protein family is essential for rhizobial Nod factor-induced transcription. Science 308, 1789–1791.

    Article  PubMed  CAS  Google Scholar 

  • Stacey, G., Libault, M., Brechenmacher, L., Wan, J., and May, G.D. (2006). Genetics and functional genomics of legume nodulation. Curr. Opin. Plant Biol. 9, 110–121.

    Article  PubMed  CAS  Google Scholar 

  • Sun, J., Cardoza, V., Mitchell, D.M., Bright, L, Oldroyd, G., and Harris, J.M. (2006). Crosstalk between jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodulation. Plant J. 46, 961–970.

    Article  PubMed  CAS  Google Scholar 

  • Tirichine, L, Imaizumi-Anraku, H., Yoshida, S., Murakami, Y., Madsen, L.H., Miwa, H., Nakagawa, T., Sandal, N., Albrektsen, A.S., Kawaguchi, M., et al. 2006a). Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development. Nature 441, 1153–1156.

    Article  PubMed  CAS  Google Scholar 

  • Tirichine, L, James, EX., Sandal, N., and Stougaard, J. (2006b). Spontaneous root-nodule formation in the model legume Lotus japonicus: a novel class of mutants nodulates in the absence of rhizobia. Mol. Plant-Microbe. 19, 373–382.

    Article  CAS  Google Scholar 

  • van Noorden, G.E., Ross, J.J., Reid, J.B., Rolfe, B.G., and Mathe-sius, U. (2006). Defective long-distance auxin transport regulation in the Medicago truncatula super numeric nodules mutant. Plant Physiol. 140, 1494–1506.

    Article  PubMed  Google Scholar 

  • Williams, L, and Fletcher, J.C. (2005). Stem cell regulation in the Arabidopsis shoot apical meristem. Curr. Opin. Plant Biol. 8, 582–586.

    Article  PubMed  CAS  Google Scholar 

  • Wopereis, J., Pajuelo, E., Dazzo, F.B., Jiang, Q., Gresshoff, P.M., De Bruijn, F.J., Stougaard, J., and Szczyglowski, K. (2000). Short root mutant of Lotus japonicus with a dramatically altered symbiotic phenotype. Plant J. 23, 97–114.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Kawaguchi.

About this article

Cite this article

Magori, S., Kawaguchi, M. Long-distance control of nodulation: Molecules and models. Mol Cells 27, 129–134 (2009). https://doi.org/10.1007/s10059-009-0016-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-009-0016-0

Keywords

Navigation