Log in

Quantifying stratigraphic uncertainty in groundwater modelling for infrastructure design

Quantification de l’incertitude stratigraphique dans la modélisation des eaux souterraines en vue de la création d’une infrastructure

Cuantificación de la incertidumbre estratigráfica en el modelado de aguas subterráneas para el diseño de infraestructuras

基础设施设计期地下水模拟中量化地层的不确定性

Quantificando a incerteza estratigráfica na modelagem de águas subterrâneas para projeto de infraestrutura

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A methodology to quantify the stratigraphic uncertainty of the aquifer bottom is used in assessing the impact of sheet piles on the water table in the vicinity of a motorway. The method includes uncertainties on model parameters and depth of sheet piles. While parameter uncertainty dominates when simulating the existing groundwater conditions, the stratigraphic uncertainty dominates when predicting the impacts of the motorway sheet piles. The uncertainty of groundwater head predictions is a key element in risk assessments for infrastructure projects, where groundwater affects construction costs. While geological structural uncertainty often is a dominating source of uncertainty in large-scale water-resource studies, stratigraphic uncertainty (defined as the uncertainty of the location of geological boundaries between units/facies) becomes more important for small-scale infrastructure projects. The methodologies used so far for handling stratigraphic uncertainty typically use a somewhat simplistic approach basing the uncertainties of the geological surfaces on the kriging variance. The proposed methodology has two novel elements. Firstly, the uncertainties in the geological interpretation of the borehole data are explicitly included. Secondly, conditional sequential Gaussian simulation (sGs) is used to quantify the uncertainties. The advantage of sGs over standard kriging-based approaches is that sGs allows descriptions of small-scale variations that are crucial in some contexts. The methodology was tested on a case site in Denmark where a new motorway has been constructed below the water table and with sheet-pile walls designed to penetrate the aquifer down to 1 m above the aquifer bottom.

Résumé

Une méthodologie pour quantifier l’incertitude stratigraphique de la base de l’aquifère est utilisée dans l’évaluation de l’impact de palplanches sur le niveau piézométrique à proximité d’une autoroute. La méthode intègre les incertitudes sur les paramètres du modèle et la profondeur des palplanches. Tandis que l’incertitude sur les paramètres prévaut lors de la simulation des conditions hydrogéologiques existantes, l’incertitude stratigraphique prévaut lors de la prédiction des impacts des palplanches de l’autoroute. L’incertitude des prédictions des charges hydrauliques est un élément clé de l’évaluation du risque pour les projets d’infrastructure, dans lesquels l’eau souterraine affecte les coûts de la construction. Alors que l’incertitude géologique structurale est souvent une source dominante d’incertitude dans les études à grande échelle des ressources en eau, l’incertitude stratigraphique (définie comme l’incertitude de la localisation des limites géologiques entre unités/faciès) devient plus importante pour les projets d’infrastructure à petite échelle. Les méthodologies utilisées jusqu’à présent pour gérer l’incertitude stratigraphique recourent généralement à une approche quelque peu simpliste fondant les incertitudes des surfaces géologiques sur la variance de krigeage. La méthodologie proposée présente deux éléments novateurs. D’abord, les incertitudes de l’interprétation géologique des données de forage sont explicitement intégrées. Ensuite, la simulation gaussienne séquentielle (sGs) conditionnelle est utilisée pour quantifier les incertitudes. L’avantage de la sGs sur les approches basées sur un krigeage standard est qu’elle permet la description des variations à petite échelle, qui est cruciale dans certains contextes. La méthodologie a été testée sur un site type au Danemark où une nouvelle autoroute a été construite en-dessous de la surface piézométrique, avec des rideaux de palplanches conçus pour pénétrer dans l’aquifère jusqu’à 1 m au-dessus de sa base.

Resumen

Se utiliza una metodología que permite cuantificar la incertidumbre estratigráfica del fondo de un acuífero para evaluar el impacto de las tablestacas en el nivel freático en las proximidades de una autopista. El método incluye incertidumbres sobre los parámetros del modelo y la profundidad de las tablestacas. Mientras que la incertidumbre de los parámetros domina cuando se simulan las condiciones existentes de las aguas subterráneas, la estratigráfica domina cuando se predicen los impactos de las tablestacas de la autopista. La incertidumbre de las predicciones de las cargas freáticas es un elemento clave en las evaluaciones de los riesgos de los proyectos de infraestructura, en los que las aguas subterráneas afectan a los costos de construcción. Si bien la incertidumbre estructural geológica suele ser una fuente de incertidumbre dominante en los estudios de recursos hídricos en gran escala, la de carácter estratigráfico (definida como la de la ubicación de los límites geológicos entre unidades/facies) se hace más importante para los proyectos de infraestructura en pequeña escala. Las metodologías utilizadas hasta ahora para manejar la incertidumbre estratigráfica suelen utilizar un enfoque algo simplista que basa en la varianza de kriging para determinar las incertidumbres de las superficies geológicas. La metodología propuesta tiene dos elementos novedosos. En primer lugar, se incluyen explícitamente las incertidumbres en la interpretación geológica de los datos de las perforaciones. En segundo lugar, se utiliza la simulación gaussiana secuencial condicional (sGs) para cuantificar las incertidumbres. La ventaja de la sGs respecto de los enfoques estándar basados en el kriging es que la sGs permite describir variaciones a pequeña escala que son cruciales en algunos contextos. La metodología se probó en un caso en Dinamarca, donde se ha construido una nueva autopista por debajo del nivel freático y con paredes de tablestacas diseñadas para penetrar en el acuífero hasta 1 m por encima del fondo del acuífero.

摘要

提出了一种量化含水层底部地层不确定性的方法,以用于评估高速公路附**板桩对地下水位的影响。该方法包括模型参数不确定性和板桩深度的不确定性。在模拟现有地下水条件时,参数不确定性占主导地位,而在预测高速公路板桩对地下水位的影响时,地层不确定性占主导地位。地下水位预测的不确定性是基础建设项目风险评估中的关键因素,在基础建设项目中地下水会影响建设成本。在大尺度的水资源研究中,地质构造的不确定性通常是不确定性的主要来源,对于小尺度的基础设施建设项目而言,地层的不确定性(定义为单元/相之间的地质边界位置的不确定性)显得更加重要。目前,通常采用简化的基于克里金方差的地表不确定性来处理地层不确定性。本文所提出的方法具有两个新颖点。首先,明确了钻孔数据在地质解释中的不确定性,其次使用序贯高斯模拟(sGs)来量化不确定性。相对于基于标准克里金法,sGs的优势在于可以描述某些情况下重要的小规模变化。该方法在丹麦的一个案例现场进行了实验,该场地有一条新建带有板桩的高速公路,板桩墙深入地下含水层直至含水层底板上方1 m。

Resumo

Uma metodologia para quantificar a incerteza estratigráfica da parte inferior do aquífero é utilizada para avaliar o impacto de estacas escavadas sobre o lençol freático nas proximidades de uma rodovia. O método inclui incertezas sobre os parâmetros do modelo e a profundidade das estacas escavadas. Enquanto a incerteza dos parâmetros domina ao simular as condições das águas subterrâneas existentes, a incerteza estratigráfica domina ao prever os impactos das estacas escavadas da rodovia. A incerteza das predições da altura das águas subterrâneas é um elemento chave nas avaliações de risco para projetos de infraestrutura, onde as águas subterrâneas afetam os custos de construção. Enquanto a incerteza estrutural geológica é frequentemente uma fonte dominante de incerteza nos estudos de recursos hídricos em larga escala, a incerteza estratigráfica (definida como a incerteza da localização dos limites geológicos entre unidades/fácies) se torna mais importante para projetos de infraestrutura de pequena escala. As metodologias usadas até agora para lidar com a incerteza estratigráfica geralmente utilizam uma abordagem um tanto simplista, baseando-se nas incertezas das superfícies geológicas sobre a variação da krigagem. A metodologia proposta tem dois elementos inovadores. Primeiro, as incertezas na interpretação geológica dos dados do poço estão explicitamente incluídas. Em segundo lugar, a simulação sequencial condicional Gaussiana (sGs) é utilizada para quantificar as incertezas. A vantagem da sGs em relação às abordagens baseadas em krigagem padrão é que a sGs permitem descrições de variações em pequena escala que são cruciais em alguns contextos. A metodologia foi testada em um caso na Dinamarca, onde uma nova rodovia foi construída abaixo do lençol freático e com paredes de chapa projetada para penetrar no aquífero até 1 m acima da parte inferior do aquífero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbott MB, Bathurst JC, Cunge JA, O’Connell PE, Rasmussen J (1986) An introduction to the European Hydrological System – Systeme Hydrologique European, “SHE”, 2: structure of a physically-based, distributed modeling system. J Hydrol 87:61–77

    Article  Google Scholar 

  • Anderson MP, Woessner WW, Hunt RJ (2015) Applied groundwater modelling: simulation of flow and advective transport, 2nd edn. Academic, New York

    Google Scholar 

  • Beven K, Binley AM (1992) The future of distributed models, model calibration and uncertainty predictions. Hydrol Proc 6:279–298

    Article  Google Scholar 

  • Bredehoeft J (2005) The conceptualization model problem–surprise. Hydrogeol J 13(1):37–46

    Article  Google Scholar 

  • Butts MB, Payne JT, Kristensen M, Madsen H (2004) An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow prediction. J Hydrol 298:242–266

    Article  Google Scholar 

  • Carle SF, Fogg GE (1996) Transition probability-based indicator geostatistics. Math Geol 28(4):453–477

    Article  Google Scholar 

  • Cheng MH, Huang MW, Pan YW, Liao JJ (2016) Lessons from a failure case of an excavated floodway supported by precast cantilever pile walls. Eng Geol 209(2016):106–118

    Article  Google Scholar 

  • Christensen S, Doherty J (2008) Predictive error dependencies when using pilot points and singular value decomposition in groundwater model calibration. Adv Water Resour 31(4):674–700

    Article  Google Scholar 

  • Cooley RL, Christensen S (2006) Bias and uncertainty in regression-calibrated models of groundwater flow in heterogeneous media. Adv Water Resour 29:639–656

    Article  Google Scholar 

  • Deutsch CV, Journel AG (1998) GSLIB: Geostatistical software library and user’s guide. http://claytonvdeutsch.com/wp-content/uploads/2019/03/GSLIB-Book-Second-Edition.pdf. Accessed January 2020

  • DHI (2017) MIKE SHE users manual. DHI, 420 pp. http://manuals.mikepoweredbydhi.help/2017/Water_Resources/MIKE_SHE_Printed_V1.pdf. Accessed 8 Feb 2021

  • Doherty J (2010) PEST, Model-independent parameter estimation: user manual, 5th edn. Watermark Numerical Computing, Brisbane, Australia

  • Ehlers LB, Refsgaard JC, Sonnenborg TO (2019) Observational and predictive uncertainties for multiple variables in a spatially distributed hydrological model. Hydrol Process 33:833–848

    Google Scholar 

  • Elfeki A, Dekking F (2001) A Markov chain model for subsurface characterization: theory and applications. Math Geol 33(5):569–589

    Article  Google Scholar 

  • Gómez-Hernández JJ, Sahuquillo A, Capilla JE (1997) Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data: 1. theory. J Hydrol 203:162–174

    Article  Google Scholar 

  • Gong W, Tang H, Wang H, Wang V, Juang CH (2019) Probabilistic analysis and design of stabilizing piles in slope considering stratigraphic uncertainty. Eng Geol 259(2019):105162

    Article  Google Scholar 

  • Graham DN, Butts M (2005) Flexible, integrated watershed modelling with MIKE SHE. In: Watershed models. Water Resour Res 38(9):245–272

  • He X, Koch J, Sonnenborg TO, Jørgensen F, Schamper C, Refsgaard JC (2014) Transition probability based stochastic geological modeling using airborne geophysical data and borehole data. Water Resour Res 50(4):3147–3169. https://doi.org/10.1002/2013WR014593

    Article  Google Scholar 

  • He XL, Sonnenborg TO, Jørgensen F, Hoyer AS, Møller RR, Jensen KH (2013) Analyzing the effect of geological and parameter uncertainty on prediction of groundwater head and travel time. Hydrol Earth Syst Sci 17(8):3245–3260

    Article  Google Scholar 

  • Hsein JC, Zhang J, Shen M, Hu J (2019) Probabilistic methods for unified treatment of geotechnical and geological uncertainties in a geotechnical analysis. Eng Geol 249(2019):148–161

    Google Scholar 

  • Højberg AL, Refsgaard JC (2005) Model uncertainty: parameter uncertainty versus conceptual models. Water Sci Technol 52(6):177–186

    Article  Google Scholar 

  • Kavetski D, Kuczera G, Franks SW (2006) Bayesian analysis of input uncertainty in hydrological modeling: 2. application. Water Resour Res 42(3). https://doi.org/10.1029/2005WR004368

  • Kidmose J, Refsgaard JC, Troldborg L, Seaby LP, Escrivà MM (2013) Climate change impacts on groundwater levels: ensemble modelling of extreme values. Hydrol Earth Syst Sci 17:1619–1634

    Article  Google Scholar 

  • Koch J, He X, Jensen KH, Refsgaard JC (2014) Challenges in conditioning a stochastic geological model of a heterogeneous glacial aquifer to a comprehensive soft data set. Hydrol Earth Syst Sci 18(8):2907–2923

    Article  Google Scholar 

  • Leuangthong O, Deutsch CV (2004) Transformation of residuals to avoid artifacts in geostatistical modelling with a trend. Math Geol 35(2):155–172

    Article  Google Scholar 

  • Li W (2007) Markov chain random fields for estimation of categorical variables. Math Geol 39(3):321–335

    Article  Google Scholar 

  • Li Z, Wang X, Wang H, Liang R (2016) Quantifying stratigraphic uncertainties by stochastic simulation techniques based on Markov random fields. Eng Geol 201:106–122

    Article  Google Scholar 

  • NASSPA (2005) Best practices sheet piling installation guide. North American Steel Sheet Piling Association. https://s3amazonawscom/isheetpile/downloads/NASSPAinstallationguidepdf. Accessed 6 March 2020

  • Neuman SP, Wierenga PJ (2003) A comprehensive strategy of hydrogeologic modeling and uncertainty analysis for nuclear facilities and sites. Report NUREG/CR-6805, University of Arizona, Tucson, AZ

  • Pebesma and Wesseling (1998) Gstat: a program for geostatistical modelling, prediction and simulation. Comput and Geosci 24(1,1998):17–31. https://doi.org/10.1016/S0098-3004(97)00082-4

  • Pebesma EJ (2004) Multivariable geostatistics in S: the gstat package. Comput Geosci 30(7):683–691

    Article  Google Scholar 

  • Refsgaard JC, van der Sluijs JP, Brown JD, van der Keur P (2006) A framework for dealing with uncertainty due to model structure error. Adv Water Resour 29:1586–1597

    Article  Google Scholar 

  • Refsgaard JC, van der Sluijs JP, Højberg AL, Vanrolleghem PA (2007) Uncertainty in the environmental modelling process: a framework and guidance. Environ Model Softw 22:1543–1556

    Article  Google Scholar 

  • Refsgaard JC, Christensen S, Sonnenborg TO, Seifert D, Højberg AL, Troldborg L (2012) Review of strategies for handling geological uncertainty in groundwater flow and transport modelling. Adv Water Resour 36:36–50

    Article  Google Scholar 

  • Scharling M (2000) Climate grid – Denmark, norms 1961–90, month and annual values. Technical report 00-11, Danish Meteorological Institute, Ministry of Transport, Copenhagen, Denmark

  • Seifert D, Sonnenborg TO, Refsgaard JC, Højberg AL, Troldborg L (2012) Assessment of hydrological model predictive ability given multiple conceptual geological models. Water Resour Res 48(6). https://doi.org/10.1029/2011WR011149

  • Selroos J, Walker D, Ström A, Gylling B, Follin S (2002) Comparison of alternative modelling approaches for groundwater flow in fractured rocks. J Hydrol 257(1–4):174–188

    Article  Google Scholar 

  • Stisen S, Tumbo M (2015) Interpolation of daily rain gauge data for hydrological modeling in data sparse regions using pattern information from satellite data. Hydrol Sci J 60(11):1911–1926

    Google Scholar 

  • Strebelle S (2002) Conditional simulation of complex geological structures using multi-points statistics. Math Geol 34(1):1–21

    Article  Google Scholar 

  • Sundell J, Rosén L, Norberg T, Haaf E (2016) A probabilistic approach to soil layer and bedrock-level modelling for risk assessment of groundwater drawdown induced land subsidence. Eng Geol 203:126–139

    Article  Google Scholar 

  • Sundell J, Haaf E, Norberg T, Alén C, Karlsson M, Rosén L (2017) Risk map** of groundwater-drawdown-induced land subsidence in heterogeneous soils on large areas. Risk Anal. https://doi.org/10.1111/risa.12890

  • Tonkin M, Doherty J (2009) Calibration-constrained Monte Carlo analysis of highly parameterized models using subspace techniques. Water Resour Res 45(12). https://doi.org/10.1029/2007WR006678

  • Walker WE, Harremoës P, Rotmans J, Van der Sluijs JP, Van Asselt MBA, Janssen P, Krayer von Krauss MP (2003) Defining uncertainty a conceptual basis for uncertainty management in model-based decision support. Integr Assess 4(1):5–17

    Article  Google Scholar 

  • **ao T, Zhang LM, Li XY, Li DQ (2017) Probalistic stratification modelling in geotechnical site characterization. ACME-ASME J Risk Uncertainty Eng Syst A Civ Eng 3(4):04017019. https://doi.org/10.1061/AJRUA6.0000924

Download references

Acknowledgements

Constructive review comments from Jeremy White and an anonymous reviewer helped improving the manuscript.

Funding

The study was part of a research collaboration between GEUS and the Danish Road Directorate 2010–2019, funded by the Danish Road Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Troldborg.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Troldborg, L., Ondracek, M., Koch, J. et al. Quantifying stratigraphic uncertainty in groundwater modelling for infrastructure design. Hydrogeol J 29, 1075–1089 (2021). https://doi.org/10.1007/s10040-021-02303-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-021-02303-5

Keywords

Navigation