Log in

Bond and fracture model in dilated polyhedral DEM and its application to simulate breakage of brittle materials

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

A bond and fracture model is developed to simulate the fracture and fragmentation with an explicit algorithm in the dilated polyhedral discrete element method in this paper. The Hertzian model is adopted in the contact model between the dilated polyhedral elements which is generated with the Minkowski sum theory. In the bond model, the bond points are initialized on the corresponding bond face of the interface between elements. The strain between two bonded points is calculated by the division of the distance of these two bonded points and the characteristic length, and thus the stress can be determined according to the elastic matrix. The bond force on each bond point is evaluated by stress and average area that every bond point represents on the bond face. The dynamic relaxation approach is employed to establish an explicit integration algorithm. A hybrid fracture model, considering the fracture energy and the unified damage, is developed to detect the fracture of the bond point. In the simulation of Brazilian test, parameters in the fracture model are analyzed to study the sensibility of this model. Furthermore, the ice load on the slope is simulated and validated with the ISO standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Eliáš, J.: Simulation of railway ballast using crushable polyhedral particles. Powder Technol. 264, 458–465 (2014). https://doi.org/10.1016/j.powtec.2014.05.052

    Article  Google Scholar 

  2. Cleary, P.W., Sinnott, M.D.: Simulation of particle flows and breakage in crushers using DEM: Part 1—compression crushers. Miner. Eng. 74, 178–197 (2015). https://doi.org/10.1016/j.mineng.2014.10.021

    Article  Google Scholar 

  3. Carmona, H.A., Wittel, F.K., Kun, F., et al.: Fragmentation processes in impact of spheres. Phys. Rev. E 77, 051302 (2008). https://doi.org/10.1103/physreve.77.051302

    Article  ADS  Google Scholar 

  4. Gopalakrishnan, P., Tafti, D.: Development of parallel DEM for the open source code MFIX. Powder Technol. 235(2), 33–41 (2013). https://doi.org/10.1016/j.powtec.2012.09.006

    Article  Google Scholar 

  5. Zhou, W., Yang, L., Ma, G., Chang, X., Cheng, Y., Li, D.: Macro–micro responses of crushable granular materials in simulated true triaxial tests. Granul. Matter 17, 497–509 (2015). https://doi.org/10.1007/s10035-015-0571-3

    Article  Google Scholar 

  6. Galindo-Torres, S.A., Pedroso, D.M., Williams, D.J., Li, L.: Breaking processes in three-dimensional bonded granular materials with general shapes. Comput. Phys. Commun. 183(2), 266–277 (2012). https://doi.org/10.1016/j.cpc.2011.10.001

    Article  ADS  Google Scholar 

  7. Yang, B., Jiao, Y., Lei, S.: A study on the effects of microparameters on macroproperties for specimens created by bonded particles. Eng. Comput. 23(6), 607–631 (2006). https://doi.org/10.1108/02644400610680333

    Article  MATH  Google Scholar 

  8. Nitka, M., Tejchman, J.: Modelling of concrete behaviour in uniaxial compression and tension with DEM. Granul. Matter 17(1), 145–164 (2015). https://doi.org/10.1007/s10035-015-0546-4

    Article  Google Scholar 

  9. Rojek, J., Oñate, E., Labra, C., Kargl, H.: Discrete element modelling of rock cutting. In: Particle-Based Methods: Fundamentals and Applications, pp. 247–267. Springer, Netherlands (2011)

    Chapter  Google Scholar 

  10. Ding, X., Zhang, L., Zhu, H., et al.: Effect of model scale and particle size distribution on PFC3D simulation results. Rock Mech. Rock Eng. 47(6), 1–18 (2013). https://doi.org/10.1007/s00603-013-0533-1

    Article  Google Scholar 

  11. Wiącek, J., Molenda, M.: Effect of particle size distribution on micro- and macromechanical response of granular packings under compression. Int. J. Solids Struct. 51(25–26), 4189–4195 (2014). https://doi.org/10.1016/j.ijsolstr.2014.06.029

    Article  Google Scholar 

  12. Govender, N., Wilke, D.N., Kok, S.: Collision detection of convex polyhedra on the NVIDIA GPU architecture for the discrete element method. Appl. Math. Comput. 267, 810–829 (2014). https://doi.org/10.1016/j.amc.2014.10.013

    Article  MathSciNet  MATH  Google Scholar 

  13. Hopkins, M.A.: Polyhedra faster than spheres? Eng. Comput. 31(3), 567–583 (2014). https://doi.org/10.1108/ec-09-2012-0211

    Article  Google Scholar 

  14. Hopkins, M.A., Tuhkuri, J.: Compression of floating ice fields. J. Geophys. Res. 104(C7), 15815 (1999). https://doi.org/10.1029/1999JC900127

    Article  ADS  Google Scholar 

  15. Pournin, L., Liebling, T.: A generalization of distinct element method to tridimensional particles with complex shapes. In: Powders and Grains, pp. 1375–1478. Balkema, Leiden (2005)

  16. Alonso-Marroquín, F., Wang, Y.: An efficient algorithm for granular dynamics simulations with complex-shaped objects. Granul. Matter 11(5), 317–329 (2009). https://doi.org/10.1007/s10035-009-0139-1

    Article  MATH  Google Scholar 

  17. Galindo-Torres, S.A., Pedroso, D.M.: Molecular dynamics simulations of complex-shaped particles using Voronoi-based spheropolyhedra. Phys. Rev. E 81(1), 529–539 (2010). https://doi.org/10.1103/PhysRevE.81.061303

    Article  Google Scholar 

  18. Gerolymatou, E., Galindo-Torres, S.A., Triantafyllidis, T.: Numerical investigation of the effect of preexisting discontinuities on hydraulic stimulation. Comput. Geotech. 69, 320–328 (2015). https://doi.org/10.1016/j.compgeo.2015.05.013

    Article  Google Scholar 

  19. Chen, Z., Wang, M.: Pore-scale modeling of hydromechanical coupled mechanics in hydrofracturing process. J. Geophys. Res. Solid Earth 122, 3410–3429 (2017). https://doi.org/10.1002/2017jb013989

    Article  ADS  Google Scholar 

  20. Potyondy, D.O., Cundall, P.A.: A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41(8), 1329–1364 (2004). https://doi.org/10.1016/j.ijrmms.2004.09.011

    Article  Google Scholar 

  21. Mechtcherine, V., Gram, A., Krenzer, K., et al.: Simulation of fresh concrete flow using discrete element method (DEM): theory and applications. Mater. Struct. 47(4), 615–630 (2014). https://doi.org/10.1617/s11527-013-0084-7

    Article  Google Scholar 

  22. Ji, S., Di, S., Long, X.: DEM simulation of uniaxial compressive and flexural strength of sea ice: parametric study of inter-particle bonding strength. ASCE J. Eng. Mech. 143(1), C4016010 (2017). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000996

    Article  Google Scholar 

  23. Azevedo, N.M., Lemos, J.V.: A generalized rigid particle contact model for fracture analysis. Int. J. Numer. Anal. Methods Geomech. 29(3), 269–285 (2005). https://doi.org/10.1002/nag.414

    Article  MATH  Google Scholar 

  24. Azevedo, N.M., Candeias, M., Gouveia, F.: A rigid particle model for rock fracture following the voronoi tessellation of the grain structure: formulation and validation. Rock Mech. Rock Eng. 48(2), 535–557 (2015). https://doi.org/10.1007/s00603-014-0601-1

    Article  ADS  Google Scholar 

  25. Wittel, F., Kun, F., Herrmann, H.J., et al.: Fragmentation of shells. Phys. Rev. Lett. 93(3), 035504 (2004). https://doi.org/10.1103/PhysRevLett.93.035504

    Article  ADS  Google Scholar 

  26. Park, K., Paulino, G.H., Roesler, J.R.: A unified potential-based cohesive model of mixed-mode fracture. J. Mech. Phys. Solids 57(6), 891–908 (2009). https://doi.org/10.1016/j.jmps.2008.10.003

    Article  ADS  Google Scholar 

  27. Lens, L.N., Bittencourt, E., D’Avila, V.M.R.: Constitutive models for cohesive zones in mixed-mode fracture of plain concrete. Eng. Fract. Mech. 76(14), 2281–2297 (2009). https://doi.org/10.1016/j.engfracmech.2009.07.020

    Article  Google Scholar 

  28. Gui, Y.L., Bui, H.H., Kodikara, J., et al.: Modelling the dynamic failure of brittle rocks using a hybrid continuum-discrete element method with a mixed-mode cohesive fracture model. Int. J. Impact Eng 87, 146–155 (2016). https://doi.org/10.1016/j.ijimpeng.2015.04.010

    Article  Google Scholar 

  29. Kazerani, T., Zhao, J.: A microstructure-based model to characterize micromechanical parameters controlling compressive and tensile failure in crystallized rock. Rock Mech. Rock Eng. 47, 435–452 (2014). https://doi.org/10.1007/s00603-013-0402-y

    Article  ADS  Google Scholar 

  30. Guo, L., Latham, J.P., **ang, J.: Numerical simulation of breakages of concrete armour units using a three-dimensional fracture model in the context of the combined finite-discrete element method. Comput. Struct. 146, 117–142 (2015). https://doi.org/10.1016/j.compstruc.2014.09.001

    Article  Google Scholar 

  31. Camanho, P.P., Davila, C.G., Moura, M.F.D.: Numerical simulation of mixed-mode progressive delamination in composite materials. J. Compos. Mater. 37(16), 1415–1438 (2003). https://doi.org/10.1177/0021998303034505

    Article  ADS  Google Scholar 

  32. **e, D., Waas, A.M.: Discrete cohesive zone model for mixed-mode fracture using finite element analysis. Eng. Fract. Mech. 73(13), 1783–1796 (2006). https://doi.org/10.1016/j.engfracmech.2006.03.006

    Article  Google Scholar 

  33. Benzeggagh, M.L., Kenane, M.: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos. Sci. Technol. 56(4), 439–449 (1996). https://doi.org/10.1016/0266-3538(96)00005-X

    Article  Google Scholar 

  34. **e, D., Chung, J., Waas, A.M., et al.: Failure analysis of adhesively bonded structures: from coupon level data to structural level predictions and verification. Int. J. Fract. 134(3–4), 231–250 (2005). https://doi.org/10.1007/s10704-005-0646-y

    Article  Google Scholar 

  35. **e, D., Waas, A.M., Shahwan, K.W., et al.: Fracture criterion for kinking cracks in a tri-material adhesively bonded joint under mixed mode loading. Eng. Fract. Mech. 72(16), 2487–2504 (2005). https://doi.org/10.1016/j.engfracmech.2005.03.008

    Article  Google Scholar 

  36. Ma, G., Zhou, W., Chang, X.L.: Modeling the particle breakage of rockfill materials with the cohesive crack model. Comput. Geotech. 61(61), 132–143 (2014). https://doi.org/10.1016/j.compgeo.2014.05.006

    Article  Google Scholar 

  37. Munjiza, A., John, N.W.M., Bangash, T.: The combined finite–discrete element method for structural failure and collapse. Eng. Fract. Mech. 71(4–6), 469–483 (2004). https://doi.org/10.1016/S0013-7944(03)00044-4

    Article  Google Scholar 

  38. Tatone, B.S.A., Grasselli, G.: A calibration procedure for two-dimensional laboratory-scale hybrid finite–discrete element simulations. Int. J. Rock Mech. Min. Sci. 75, 56–72 (2015). https://doi.org/10.1016/j.ijrmms.2015.01.011

    Article  Google Scholar 

  39. Zárate, F., Cornejo, A., Oñate, E.: A three-dimensional FEM–DEM technique for predicting the evolution of fracture in geomaterials and concrete. Comput. Part. Mech. 5, 411–420 (2018). https://doi.org/10.1007/s40571-017-0178-z

    Article  Google Scholar 

  40. Ma, G., Zhou, W., Regueiro, R.A., Wang, Q., Chang, X.: Modeling the fragmentation of rock grains using computed tomography and combined FDEM. Powder Technol. 308, 388–397 (2017). https://doi.org/10.1016/j.powtec.2016.11.046

    Article  Google Scholar 

  41. Ma, G., Zhou, W., Chang, X.L., et al.: A hybrid approach for modeling of breakable granular materials using combined finite-discrete element method. Granul. Matter 18, 7 (2016). https://doi.org/10.1007/s10035-016-0615-3

    Article  Google Scholar 

  42. Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000). https://doi.org/10.1016/S0022-5096(99)00029-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Ha, Y.D., Bobaru, F.: Characteristics of dynamic brittle fracture captured with peridynamics. Eng. Fract. Mech. 78, 1156–1168 (2011). https://doi.org/10.1016/j.engfracmech.2010.11.020

    Article  Google Scholar 

  44. Huang, D., Lu, G., Qiao, P.: An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis. Int. J. Mech. Sci. 94–95, 111–122 (2015). https://doi.org/10.1016/j.ijmecsci.2015.02.018

    Article  Google Scholar 

  45. Li, P., Hao, Z.M., Zhen, W.Q.: A stabilized non-ordinary state-based peridynamic model. Comput. Methods Appl. Mech. Eng. 339, 262–280 (2018). https://doi.org/10.1016/j.cma.2018.05.002

    Article  ADS  MathSciNet  Google Scholar 

  46. Yang, D., He, X., Yi, S., Liu, X.: An improved ordinary state-based peridynamic model for cohesive crack growth in quasi-brittle materials. Int. J. Mech. Sci. 153–154, 402–415 (2019). https://doi.org/10.1016/j.ijmecsci.2019.02.019

    Article  Google Scholar 

  47. Parks, M.L., Lehoucq, R.B., Plimpton, S.J., et al.: Implementing peridynamics within a molecular dynamics code. Comput. Phys. Commun. 179(11), 777–783 (2008). https://doi.org/10.1016/j.cpc.2008.06.011

    Article  ADS  MATH  Google Scholar 

  48. Powell, M.S., Morrison, R.D.: The future of comminution modelling. Int. J. Miner. Process. 84, 228–239 (2007). https://doi.org/10.1016/j.minpro.2006.08.003

    Article  Google Scholar 

  49. Estay, D.A., Chiang, L.E.: Discrete crack model for simulating rock comminution processes with the discrete element method. Int. J. Rock Mech. Min. Sci. 60, 125–133 (2013). https://doi.org/10.1016/j.ijrmms.2012.12.041

    Article  Google Scholar 

  50. Lai, X., Liu, L., Li, S., et al.: A non-ordinary state-based peridynamics modeling of fractures in quasi-brittle materials. Int. J. Impact Eng 11, 130–146 (2018). https://doi.org/10.1016/j.ijimpeng.2017.08.008

    Article  Google Scholar 

  51. Kawai, T.: New discrete models and their application to seismic response analysis of structures. Nucl. Eng. Des. 48(1), 207–229 (1978). https://doi.org/10.1016/0029-5493(78)90217-0

    Article  MathSciNet  Google Scholar 

  52. Zhang, J.H., He, J.D., Fan, J.W.: Static and dynamic stability assessment of slopes or dam foundations using a rigid body–spring element method. Int. J. Rock Mech. Min. Sci. 38(8), 1081–1090 (2001). https://doi.org/10.1016/S1365-1609(01)00072-7

    Article  Google Scholar 

  53. Liu, F., Zhao, J.: Limit analysis of slope stability by rigid finite-element method and linear programming considering rotational failure. Int. J. Geomech. 13(6), 827–839 (2013). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000283

    Article  Google Scholar 

  54. Nagai, K., Sato, Y., Ueda, T.: Mesoscopic simulation of failure of mortar and concrete by 3D RBSM. J. Adv. Concr. Technol. 3(3), 385–402 (2005). https://doi.org/10.3151/jact.3.385

    Article  Google Scholar 

  55. Hayashi, D., Nagai, K.: Investigating the anchorage performance of RC by using three-dimensional discrete analysis. Eng. Comput. 30(6), 815–824 (2013). https://doi.org/10.1108/EC-Jun-2012-0126

    Article  Google Scholar 

  56. Wang, L., Soda, M., Ueda, T.: Simulation of chloride diffusivity for cracked concrete based on RBSM and truss network model. J. Adv. Concr. Technol. 6(1), 143–155 (2008). https://doi.org/10.3151/jact.6.143

    Article  Google Scholar 

  57. Wang, L., Ueda, T.: Mesoscale modeling of water penetration into concrete by capillary absorption. Ocean Eng. 38(4), 519–528 (2011). https://doi.org/10.1016/j.oceaneng.2010.12.019

    Article  Google Scholar 

  58. Puzyrev, V., Koldan, J., Puente, J.D.L., et al.: A parallel finite-element method for three-dimensional controlled-source electromagnetic forward modelling. Geophys. J. Int. 193(2), 678–693 (2013). https://doi.org/10.1093/gji/ggt027

    Article  ADS  Google Scholar 

  59. Sase, K., Fukuhara, A., Tsujita, T., et al.: GPU-accelerated surgery simulation for opening a brain fissure. Robomech J. 2(1), 1–16 (2015). https://doi.org/10.1186/s40648-015-0040-0

    Article  Google Scholar 

  60. Joldes, G.R., Wittek, A., Miller, K.: An adaptive dynamic relaxation method for solving nonlinear finite element problems. Application to brain shift estimation. Int. J. Numer. Methods Biomed. Eng. 27(2), 173–185 (2011). https://doi.org/10.1002/cnm.1407

    Article  MathSciNet  MATH  Google Scholar 

  61. Salehi, M., Aghaei, H.: Dynamic relaxation large deflection analysis of non-axisymmetric circular viscoelastic plates. Comput. Struct. 83(23), 1878–1890 (2005). https://doi.org/10.1016/j.compstruc.2005.02.023

    Article  Google Scholar 

  62. Kmet, S., Mojdis, M.: Time-dependent analysis of cable domes using a modified dynamic relaxation method and creep theory. Comput. Struct. 125(1), 11–22 (2013). https://doi.org/10.1016/j.compstruc.2013.04.019

    Article  Google Scholar 

  63. Lee, E.S., Moulinec, C., Xu, R., et al.: Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method. J. Comput. Phys. 227(18), 8417–8436 (2008). https://doi.org/10.1016/j.jcp.2008.06.005

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. Liu, L., Ji, S.: Ice load on floating structure simulated with dilated polyhedral discrete element method in broken ice field. Appl. Ocean Res. 75, 53–65 (2018). https://doi.org/10.1016/j.apor.2018.02.022

    Article  Google Scholar 

  65. Hopkins, M.A.: On the ridging of intact lead ice. J. Geophys. Res. Oceans 99(C8), 16351–16360 (1994). https://doi.org/10.1029/94JC00996

    Article  ADS  Google Scholar 

  66. Lu, W., Lubbad, R., Løset, S.: Simulating ice-slo** structure interactions with the cohesive element method. J. Offshore Mech. Arct. Eng. 136(3), 16 (2014). https://doi.org/10.1115/1.4026959

    Article  Google Scholar 

  67. Govender, N., Wilke, D.N., Kok, S., et al.: Development of a convex polyhedral discrete element simulation framework for NVIDIA Kepler based GPUs. J. Comput. Appl. Math. 270, 386–400 (2014). https://doi.org/10.1016/j.cam.2013.12.032

    Article  MathSciNet  MATH  Google Scholar 

  68. Wang, Y., Abe, S., Latham, S., et al.: Implementation of particle-scale rotation in the 3-d lattice solid model. Pure. appl. Geophys. 163(9), 1769–1785 (2006). https://doi.org/10.1007/978-3-7643-7992-6_4

    Article  ADS  Google Scholar 

  69. Lu, G., Third, J.R., Müller, C.R.: Discrete element models for non-spherical particle systems: from theoretical developments to applications. Chem. Eng. Sci. 127, 425–465 (2015). https://doi.org/10.1016/j.ces.2014.11.050

    Article  Google Scholar 

  70. Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. P. Noordhof, Groningen (1963). https://doi.org/10.1017/s1446788700004535

    Book  MATH  Google Scholar 

  71. Lavrov, A., Vervoort, A.: Theoretical treatment of tangential loading effects on the Brazilian test stress distribution. Int. J. Rock Mech. Min. Sci. 39(2), 275–283 (2002). https://doi.org/10.1016/S1365-1609(02)00010-2

    Article  Google Scholar 

  72. Gope, P.C., Bisht, N., Singh, V.K.: Influence of crack offset distance on interaction of multiple collinear and offset edge cracks in a rectangular plate. Theoret. Appl. Fract. Mech. 70, 19–29 (2014). https://doi.org/10.1016/j.tafmec.2014.04.001

    Article  Google Scholar 

  73. Lin, H., **ong, W., Zhong, W., et al.: Location of the crack initiation points in the brazilian disc test. Geotech. Geol. Eng. 32(5), 1339–1345 (2014). https://doi.org/10.1007/s10706-014-9800-5

    Article  Google Scholar 

  74. Wang, Q.Z., Jia, X.M., Kou, S.Q., et al.: The flattened Brazilian disc specimen used for testing elastic modulus, tensile strength and fracture toughness of brittle rocks: analytical and numerical results. Int. J. Rock Mech. Min. Sci. 41(2), 245–253 (2004). https://doi.org/10.1016/S1365-1609(03)00093-5

    Article  Google Scholar 

  75. Elghazel, A., Taktak, R., Bouaziz, J.: Determination of elastic modulus, tensile strength and fracture toughness of bioceramics using the flattened Brazilian disc specimen: analytical and numerical results. Ceram. Int. 41(9), 12340–12348 (2015). https://doi.org/10.1016/j.ceramint.2015.06.063

    Article  Google Scholar 

  76. Lin, H., **ong, W., **ong, Z., et al.: Three-dimensional effects in a flattened Brazilian disk test. Int. J. Rock Mech. Min. Sci. 74, 10–14 (2015). https://doi.org/10.1016/j.ijrmms.2014.11.006

    Article  Google Scholar 

  77. Hopkins, M.A.: Onshore ice pile-up: a comparison between experiments and simulations. Cold Reg. Sci. Technol. 26(3), 205–214 (1997). https://doi.org/10.1016/S0165-232X(97)00015-3

    Article  Google Scholar 

  78. Long, X., Ji, S., Wang, Y.: Validation of microparameters in discrete element modeling of sea ice failure process. Part. Sci. Technol. (2018). https://doi.org/10.1080/02726351.2017.1404515

    Article  Google Scholar 

  79. Paavilainen, J., Tuhkuri, J., Polojärvi, A.: 2D numerical simulations of ice rubble formation process against an inclined structure. Cold Reg. Sci. Technol. 68(1–2), 20–34 (2011). https://doi.org/10.1016/j.coldregions.2011.05.003

    Article  Google Scholar 

  80. Paavilainen, J., Tuhkuri, J.: Parameter effects on simulated ice rubbling forces on a wide slo** structure. Cold Reg. Sci. Technol. 81(5), 1–10 (2012). https://doi.org/10.1016/j.coldregions.2012.04.005

    Article  Google Scholar 

  81. Huang, X., Hanley, K.J., O’Sullivan, C., et al.: Effect of sample size on the response of DEM samples with a realistic grading. Particuology 15, 107–115 (2014). https://doi.org/10.1016/j.partic.2013.07.006

    Article  Google Scholar 

  82. Papadrakakis, M.: A method for the automatic evaluation of the dynamic relaxation parameters. Comput. Methods Appl. Mech. Eng. 25(1), 35–48 (1981). https://doi.org/10.1016/0045-7825(81)90066-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. Hiraoka, K., Arakawa, M., Setoh, M., et al.: Measurements of target compressive and tensile strength for application to impact cratering on ice-silicate mixtures. J. Geophys. Res. Planets 113, E02013 (2008). https://doi.org/10.1029/2007je002926

    Article  ADS  Google Scholar 

  84. Sun, S., Shen, H.H.: Simulation of pancake ice load on a circular cylinder in a wave and current field. Cold Reg. Sci. Technol. 78(4), 21–39 (2012). https://doi.org/10.1016/j.coldregions.2012.02.003

    Article  Google Scholar 

  85. Sotomayor, O.E., Tippur, H.V.: Role of cell regularity and relative density on elasto-plastic compression response of random honeycombs generated using Voronoi diagrams. Int. J. Solids Struct. 51(21–22), 3776–3786 (2014). https://doi.org/10.1016/j.ijsolstr.2014.07.009

    Article  Google Scholar 

  86. Urabe, N., Iwasaki, T., Yoshitake, A.: Fracture toughness of sea ice. Cold Reg. Sci. Technol. 3(1), 29–37 (1980). https://doi.org/10.1016/0165-232X(80)90004-X

    Article  Google Scholar 

  87. International Organization for Standardization. ISO 19906: 2010, Petroleum and natural gas industries-Arctic offshore structures. International Organization for Standardization, Europe (2010)

  88. Frederking, R.M.W., Timco, G.W.: Quantitative analysis of ice sheet failure against an inclined plane. J. Energy Resour. Technol. 107, 381–387 (1985). https://doi.org/10.1115/1.3231205

    Article  Google Scholar 

Download references

Acknowledgements

This study is financially supported by the National Key Research and Development Program of China (Grant Numbers 2018YFA0605902, 2017YFE0111400, 2016YCF1401505) and the National Natural Science Foundation of China (Grant Numbers 41576179, 51639004, 11772085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunying Ji.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Ji, S. Bond and fracture model in dilated polyhedral DEM and its application to simulate breakage of brittle materials. Granular Matter 21, 41 (2019). https://doi.org/10.1007/s10035-019-0896-4

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-019-0896-4

Keywords

Navigation