Log in

Carbon Sequestration in a Large Hydroelectric Reservoir: An Integrative Seismic Approach

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Artificial reservoirs likely accumulate more carbon than natural lakes due to their unusually high sedimentation rates. Nevertheless, the actual magnitude of carbon accumulating in reservoirs is poorly known due to a lack of whole-system studies of carbon burial. We determined the organic carbon (OC) burial rate and the total OC stock in the sediments of a tropical hydroelectric reservoir by combining a seismic survey with sediment core sampling. Our data suggest that no sediment accumulation occurs along the margins of the reservoir and that irregular bottom morphology leads to irregular sediment deposition. Such heterogeneous sedimentation resulted in high spatial variation in OC burial—from 0 to 209 g C m−2 y−1. Based on a regression between sediment accumulation and OC burial rates (R 2 = 0.94), and on the mean reservoir sediment accumulation rate (0.51 cm y−1, from the seismic survey), the whole-reservoir OC burial rate was estimated at 42.2 g C m−2 y−1. This rate was equivalent to 70% of the reported carbon emissions from the reservoir surface to the atmosphere and corresponded to a total sediment OC accumulation of 0.62 Tg C since the reservoir was created. The approach we propose here allows an inexpensive and integrative assessment of OC burial in reservoirs by taking into account the high degree of spatial variability and based on a single assessment. Because burial can be assessed shortly after the survey, the approach combining a seismic survey and coring could, if applied on a larger scale, contribute to a more complete estimate of carbon stocks in freshwater systems in a relatively short period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Adams EW, Wolfgang S, Anselmetti FS. 2001. Morphology and curvature of delta slopes in Swiss lakes: lessons for the interpretation of clinoforms in seismic data. Sedimentology 48:661–79.

    Article  Google Scholar 

  • Alin SR, Johnson TC. 2007. Carbon cycling in large lakes of the world: a synthesis of production, burial, and lake-atmosphere exchange estimates. Global Biogeochem Cycles 21(3):GB3002.

    Article  Google Scholar 

  • Allan JD, Castillo MM. 2007. Stream ecology: structure and functioning of running waters. Dordrecht: Springer.

    Book  Google Scholar 

  • Barros N, Cole JJ, Tranvik LJ, Prairie YT, Bastviken D, Huszar VLM, Del Giorgio P, Roland F. 2011. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat Geosci 4(9):593–6.

    Article  CAS  Google Scholar 

  • Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ. 2009. The boundless carbon cycle. Nat Geosci 2(9):598–600.

    Article  CAS  Google Scholar 

  • Bennett SJ, Rhoton FE, Dunbar JA. 2005. Texture, spatial distribution, and rate of reservoir sedimentation within a highly erosive, cultivated watershed: Grenada Lake, Mississippi. Water Resour Res 41(1):W01005.

    Google Scholar 

  • Blais JM, Kalff J. 1995. The influence of lake morphometry on sediment focusing. Limnol Oceanogr 40(3):582–8.

    Article  CAS  Google Scholar 

  • Byrnes, Baker JL, Li F. 2002. Quantifying potential measurement errors and uncertainties associated with bathymetric change analysis. Vicksburg: US Army Engineer Research and Development Center.

    Google Scholar 

  • Cardoso SJ, Enrich-Prast A, Pace ML, Roland F. 2014. Do models of organic carbon mineralization extrapolate to warmer tropical sediments? Limnol Oceanogr 59(1):48–54.

    Article  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J. 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10(1):172–85.

    Article  Google Scholar 

  • Davis MB, Ford MSJ. 1982. Sediment focusing in Mirror Lake, New-Hampshire. Limnol Oceanogr 27(1):137–50.

    Article  Google Scholar 

  • Dean WE. 1999. The carbon cycle and biogeochemical dynamics in lake sediments. J Paleolimnol 21(4):375–93.

    Article  Google Scholar 

  • Dean WE, Gorham E. 1998. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology 26(6):535–8.

    Article  Google Scholar 

  • Downing JA, Cole JJ, Middelburg JJ, Striegl RG, Duarte CM, Kortelainen P, Prairie YT, Laube KA. 2008. Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Global Biogeochem Cycles 22(1):GB1018.

    Article  Google Scholar 

  • Dunbar JA, Allen PM, Higley PD. 1999. Multifrequency acoustic profiling for water reservoir sedimentation studies. J Sediment Res 69(2):518–27.

    Article  Google Scholar 

  • Einsele G, Yan J, Hinderer M. 2001. Atmospheric carbon burial in modern lake basins and its significance for the global carbon budget. Global Planet Change 30(3):167–95.

    Article  Google Scholar 

  • Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW. 2000. Nutritional constraints in terrestrial and freshwater food webs. Nature 408(6812):578–80.

    Article  CAS  PubMed  Google Scholar 

  • Fearnside PM, Pueyo S. 2012. Greenhouse-gas emissions from tropical dams. Nat Clim Change 2(6):382–4.

    Article  CAS  Google Scholar 

  • Ferland M-E, del Giorgio PA, Teodoru CR, Prairie YT. 2012. Long-term C accumulation and total C stocks in boreal lakes in northern Québec. Global Biogeochem Cycles 26(4):GB0E04.

    Article  Google Scholar 

  • Gudasz C, Bastviken D, Steger K, Premke K, Sobek S, Tranvik LJ. 2010. Temperature-controlled organic carbon mineralization in lake sediments. Nature 466(7305):478–81.

    Article  CAS  PubMed  Google Scholar 

  • Gudasz C, Bastviken D, Premke K, Steger K, Tranvik LJ. 2012. Constrained microbial processing of allochthonous organic carbon in boreal lake sediments. Limnol Oceanogr 57(1):163.

    Article  CAS  Google Scholar 

  • Hanson PC, Bade KL, Carpenter SR, Kratz TK. 2003. Lake metabolism: relationships with dissolved organic carbon and phosphorus. Limnol Oceanogr 48(3):1112–19.

    Article  CAS  Google Scholar 

  • Heirman K, De Batist M, Charlet F, Moernaut J, Chapron E, Brümmer R, Pino M, Urrutia R. 2011. Detailed seismic stratigraphy of Lago Puyehue: implications for the mode and timing of glacier retreat in the Chilean Lake District. J Quat Sci 26(7):665–74.

    Article  Google Scholar 

  • Hilbe M, Anselmetti FS, Eilertsen RS, Hansen L, Wildi W. 2011. Subaqueous morphology of Lake Lucerne (Central Switzerland): implications for mass movements and glacial history. Swiss J Geosci 104(3):425–43.

    Article  Google Scholar 

  • ICOLD. 2003. International Commission On Large Dams. World register of dams. http://www.icold-cigb.org/.

  • IPCC. 2007. Intergovernmental Panel on Climate Change. http://www.ipcc.chpp.

  • James WF, Barko JW. 1993. Sediment resuspension, redeposition, and focusing in a small dimictic reservoir. Can J Fish Aquat Sci 50(5):1023–8.

    Article  Google Scholar 

  • Kastowski M, Hinderer M, Vecsei A. 2011. Long-term carbon burial in European lakes: analysis and estimate. Global Biogeochem Cycles 25(3):GB3019.

    Article  Google Scholar 

  • Kent C, Wong J. 1982. An index of littoral-zone complexity and its measurement. Can J Fish Aquat Sci 39(6):847–53.

    Article  Google Scholar 

  • Kortelainen P, Pajunen H. 2000. Carbon store in Finnish lake sediments: a preliminary estimate. Geol Surv Finl 29:83–92.

    Google Scholar 

  • Kortelainen P, Pajunen H, Rantakari M, Saarnisto M. 2004. A large carbon pool and small sink in boreal Holocene lake sediments. Glob Change Biol 10(10):1648–53.

    Article  Google Scholar 

  • Kunz MJ, Anselmetti FS, Wüest A, Wehrli B, Vollenweider A, Thüring S, Senn DB. 2011. Sediment accumulation and carbon, nitrogen, and phosphorus deposition in the large tropical reservoir Lake Kariba (Zambia/Zimbabwe). J Geophys Res Biogeosci 116(G3):G03003.

    Article  Google Scholar 

  • Lyons RP, Scholz CA, Buoniconti MR, Martin MR. 2011. Late Quaternary stratigraphic analysis of the Lake Malawi Rift, East Africa: an integration of drill-core and seismic-reflection data. Palaeogeogr Palaeoclimatol Palaeoecol 303(1):20–37.

    Article  Google Scholar 

  • Mackay EB, Jones ID, Folkard AM, Barker P. 2012. Contribution of sediment focussing to heterogeneity of organic carbon and phosphorus burial in small lakes. Freshw Biol 57(2):290–304.

    Article  CAS  Google Scholar 

  • Mendonça R, Kosten S, Sobek S, Barros N, Cole JJ, Tranvik L, Roland F. 2012. Hydroelectric carbon sequestration. Nat Geosci 5(12):838–40.

    Article  Google Scholar 

  • Mulholland PJ, Elwood JW. 1982. The role of lake and reservoir sediments as sinks in the perturbed global carbon cycle. Tellus 34(5):490–9.

    Article  CAS  Google Scholar 

  • Mullins HT, Eyles N, Hinchey EJ. 1991. High-resolution seismic stratigraphy of Lake Mcdonald, Glacier National Park, Montana, USA. Arct Alp Res 23(3):311–19.

    Article  Google Scholar 

  • Odhiambo BK, Boss SK. 2004. Integrated echo sounder, GPS, and GIS for reservoir sedimentation studies: examples from two Arkansas Lakes. J Am Water Resour Assoc 40(4):981–97.

    Article  Google Scholar 

  • Olsson IU. 1991. Accuracy and precision in sediment chronology. Hydrobiologia 214:25–34.

    Article  Google Scholar 

  • Olsson IU. 2009. Radiocarbon dating history: early days, questions, and problems met. Radiocarbon 51(1):1–43.

    CAS  Google Scholar 

  • Ometto JP, Cimbleris AC, dos Santos MA, Rosa LP, Abe D, Tundisi JG, Stech JL, Barros N, Roland F. 2013. Carbon emission as a function of energy generation in hydroelectric reservoirs in Brazilian dry tropical biome. Energy Policy 58:109–16.

    Article  CAS  Google Scholar 

  • Pace ML, Prairie YT. 2004. Respiration in lakes. In: del Giorgio PA, Williams, PJleB, Eds. Respiration in aquatic ecosystems. Oxford: Oxford University Press. p. 103–21.

  • Rangel LM, Silva LH, Rosa P, Roland F, Huszar VL. 2012. Phytoplankton biomass is mainly controlled by hydrology and phosphorus concentrations in tropical hydroelectric reservoirs. Hydrobiologia 693(1):13–28.

    Article  CAS  Google Scholar 

  • Ritchie JC. 1989. Carbon content of sediments of small reservoirs. J Am Water Resour Assoc 25(2):301–8.

    Article  CAS  Google Scholar 

  • Roland F, Vidal LO, Pacheco FS, Barros NO, Assireu A, Ometto JP, Cimbleris ACP, Cole JJ. 2010. Variability of carbon dioxide flux from tropical (Cerrado) hydroelectric reservoirs. Aquat Sci 72(3):283–93.

    Article  CAS  Google Scholar 

  • Schlesinger WH. 1990. Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature 348(6298):232–4.

    Article  CAS  Google Scholar 

  • Shotbolt LA, Thomas AD, Hutchinson SM. 2005. The use of reservoir sediments as environmental archives of catchment inputs and atmospheric pollution. Prog Phys Geogr 29(3):337–61.

    Article  Google Scholar 

  • Sobek S, Durisch-Kaiser E, Zurbrügg R, Wongfun N, Wessels M, Pasche N, Wehrli B. 2009. Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source. Limnol Oceanogr 54(6):2243.

    Article  Google Scholar 

  • Sobek S, DelSontro T, Wongfun N, Wehrli B. 2012. Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir. Geophys Res Lett 39(1):L01401.

    Article  Google Scholar 

  • St. Louis VL, Kelly CA, Duchemin É, Rudd JW, Rosenberg DM. 2000. Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate. Bioscience 50(9):766–75.

    Article  Google Scholar 

  • Stallard RF. 1998. Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial. Global Biogeochem Cycles 12(2):231–57.

    Article  CAS  Google Scholar 

  • Thornton KW, Kimmel BL, Payne FE. 1990. Reservoir limnology: ecological perspectives. New York: Wiley.

    Google Scholar 

  • Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ et al. 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography 54(6):2298–314.

    Article  CAS  Google Scholar 

  • Tunnicliffe J, Church M, Enkin RJ. 2012. Postglacial sediment yield to Chilliwack Lake, British Columbia, Canada. Boreas 41(1):84–101.

    Article  Google Scholar 

  • Vörösmarty CJ, Meybeck M, Fekete B, Sharma K, Green P, Syvitski JP. 2003. Anthropogenic sediment retention: major global impact from registered river impoundments. Global Planet Change 39(1):169–90.

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to Marten Scheffer for the insights and critical discussions, to Carlos Henrique Estrada and Anderson Freitas for the support in the field and laboratory analysis, and to Marcio Malafaia for hel** with the maps. The authors acknowledge support from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES (Raquel Mendonça), NWO-VENI grant 86312012 (Sarian Kosten), The Swedish Research Council Formas (Sebastian Sobek), and Conselho Nacional de Investigação Científica e Tecnológica—CNPq (Fábio Roland). This research was also supported by Grants from Furnas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Mendonça.

Additional information

Author Contributions

RM, FR, SK, ACB, and ALA designed the study; RM, SK, SJC, and ACB performed the field work; RM, SK, SS, and JJC wrote the manuscript; all authors participated in the data analysis and reviewed the paper.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendonça, R., Kosten, S., Sobek, S. et al. Carbon Sequestration in a Large Hydroelectric Reservoir: An Integrative Seismic Approach. Ecosystems 17, 430–441 (2014). https://doi.org/10.1007/s10021-013-9735-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-013-9735-3

Keywords

Navigation