Log in

Mesoporous activated carbon spheres derived from resorcinol-formaldehyde resin with high performance for supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Porous electrode materials with large surface area and suitable pore size, as well as short diffusion distance of electrolyte ions in pore channels are desiderated for supercapacitor applications. Herein, we reported the synthesis of mesoporous activated carbon spheres (MACSs) that were obtained by the activation of resorcinol-formaldehyde (RF) resin using ZnCl2 as the activating agent. The spherical morphology of MACSs was characterized by scanning electron microscopy and transmission electron microscopy observations, and the well-developed mesoporous network (∼2.73 nm), high BET specific surface area (up to 2437.1 m2 g−1), and total pore volume (1.37 cm3 g−1) were obtained by a nitrogen sorption technique. Electrochemical measurements showed the excellent capacitive performance of MACSs and small internal resistance. It presented maximum specific capacitance value of 204 F g−1 for MACS-8 in 2 M KOH aqueous solution at a current density of 0.5 A g−1 and still remained 126 F g−1 at large current density as 20 A g−1, which well met the practical requirements of supercapacitors. Besides, the electrode material also demonstrated prominent long-cycling stability without any capacity loss after 5000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kim TY, Jung G, Yoo S, Suh KS, Ruoff RS (2013) Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores. ACS Nano 7:6899–6905

    Article  CAS  Google Scholar 

  2. Wei L, Sevilla M, Fuertes AB, Mokaya R, Yushin G (2012) Polypyrrole-derived activated carbons for high-performance electrical double-layer capacitors with ionic liquid electrolyte. Adv Funct Mater 22:827–834

    Article  CAS  Google Scholar 

  3. Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y (2009) Supercapacitor devices based on graphene materials. J Phys Chem C 113:13103–13107

    Article  CAS  Google Scholar 

  4. Zhang J, Lee JW (2014) Supercapacitor electrodes derived from carbon dioxide. ACS Sustain Chem Eng 2:735–740

    Article  CAS  Google Scholar 

  5. Ruiz V, Pandolfo AG (2011) High-frequency carbon supercapacitors from polyfurfuryl alcohol. J Power Sources 196:7816–7822

    Article  CAS  Google Scholar 

  6. Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863–4868

    Article  CAS  Google Scholar 

  7. Zhou X, Li L, Dong S, Chen X, Han P, Xu H, Yao J, Shang C, Liu Z, Cui G (2012) A renewable bamboo carbon/polyaniline composite for a high-performance supercapacitor electrode material. J Solid State Electrochem 16:877–882

    Article  CAS  Google Scholar 

  8. Li M, Liu C, Cao H, Zhao H, Zhang Y, Fan Z (2014) KOH self-templating synthesis of three-dimensional hierarchical porous carbon materials for high performance supercapacitors. J Mater Chem Res A 2:14844–14851

    Article  CAS  Google Scholar 

  9. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541

    Article  CAS  Google Scholar 

  10. Tan Y, Xu C, Chen G, Liu Z, Ma M, **e Q, Zheng N, Yao S (2013) Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor. ACS Appl Mater Interfaces 5:2241–2248

    Article  CAS  Google Scholar 

  11. Sevilla M, Fuertes AB (2014) Direct synthesis of highly porous interconnected carbon nanosheets and their application as high-performance supercapacitors. ACS Nano 8:5069–5078

    Article  CAS  Google Scholar 

  12. Wahid M, Puthusseri D, Phase D, Ogale S (2014) Enhanced capacitance retention in a supercapacitor made of carbon from sugarcane bagasse by hydrothermal pretreatment. Energy Fuels 28:4233–4240

    Article  CAS  Google Scholar 

  13. Mishra AK, Ramaprabhu S (2011) Functionalized graphene-based nanocomposites for supercapacitor application. J Phys Chem C 115:14006–14013

    Article  CAS  Google Scholar 

  14. ** YZ, Kim YJ, Gao C, Zhu YQ, Huczko A, Endo M, Kroto HW (2006) High temperature annealing effects on carbon spheres and their applications as anode materials in Li-ion secondary battery. Carbon 44:724–729

    Article  CAS  Google Scholar 

  15. Lin JH, Ko TH, Lin YH, Pan CK (2009) Various treated conditions to prepare porous activated carbon fiber for application in supercapacitor electrodes. Energy Fuels 23:4668–4677

    Article  CAS  Google Scholar 

  16. Zhao Y, Liu M, Gan L, Ma X, Zhu D, Xu Z, Chen L (2014) Ultramicroporous carbon nanoparticles for the high-performance electrical double-layer capacitor electrode. Energy Fuels 28:1561–1568

    Article  CAS  Google Scholar 

  17. Zhao Y, Liu M, Deng X, Miao L, Tripathi PK, Ma X, Zhu D, Xu Z, Hao Z, Gan L (2015) Nitrogen-functionalized microporous carbon nanoparticles for high performance supercapacitor electrode. Electrochim Acta 153:448–455

    Article  CAS  Google Scholar 

  18. Wang K, Wang Y, Wang Y, Hosono E, Zhou H (2009) Mesoporous carbon nanofibers for supercapacitor application. J Phys Chem C 113:1093–1097

    Article  CAS  Google Scholar 

  19. Li W, Zhang F, Dou Y, Wu Z, Liu H, Qian X, Gu D, **a Y, Tu B, Zhao D (2011) A self-template strategy for the synthesis of mesoporous carbon nanofibers as advanced supercapacitor electrodes. Adv Energy Mater 1:382–386

    Article  CAS  Google Scholar 

  20. Pol VG, Shrestha LK, Ariga K (2014) Tunable, functional carbon spheres derived from rapid synthesis of resorcinol-formaldehyde resins. ACS Appl Mater Interfaces 6:10649–10655

    Article  CAS  Google Scholar 

  21. Ma X, Liu M, Gan L, Zhao Y, Chen L (2013) Synthesis of micro- and mesoporous carbon spheres for supercapacitor electrode. J Solid State Electrochem 17:2293–2301

    Article  CAS  Google Scholar 

  22. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    Article  CAS  Google Scholar 

  23. Yin H, Lu B, Xu Y, Tang D, Mao X, **ao W, Wang D, Alshawabkeh AN (2014) Harvesting capacitive carbon by carbonization of waste biomass in molten salts. Environ Sci Technol 48:8101–8108

    Article  CAS  Google Scholar 

  24. Zhai D, Du H, Li B, Zhu Y, Kang F (2011) Porous graphitic carbons prepared by combining chemical activation with catalytic graphitization. Carbon 49:725–736

    Article  CAS  Google Scholar 

  25. Yuan DS, Zeng J, Chen J, Liu Y (2009) Highly ordered mesoporous carbon synthesized via in situ template for supercapacitors. Int J Electrochem Sci 4:562–570

    CAS  Google Scholar 

  26. Liang Y, Wu D, Fu R (2009) Preparation and electrochemical performance of novel ordered mesoporous carbon with an interconnected channel structure. Langmuir 25:7783–7785

    Article  CAS  Google Scholar 

  27. Wen ZB, Qu QT, Gao Q, Zheng XW, Hu ZH, Wu YP, Liu YF, Wang XJ (2009) An activated carbon with high capacitance from carbonization of a resorcinol-formaldehyde resin. Electrochem Commun 11:715–718

    Article  CAS  Google Scholar 

  28. Yamada H, Nakamura H, Nakahara F, Moriguchi I, Kudo T (2007) Electrochemical study of high electrochemical double layer capacitance of ordered porous carbons with both meso/macropores and micropores. J Phys Chem C 111:227–233

    Article  CAS  Google Scholar 

  29. Dai Y, Jiang H, Hu Y, Fu Y, Li C (2014) Controlled synthesis of ultrathin hollow mesoporous carbon nanospheres for supercapacitor applications. Ind Eng Chem Res 53:3125–3130

    Article  CAS  Google Scholar 

  30. Hao L, Li X, Zhi L (2013) Carbonaceous electrode materials for supercapacitors. Adv Mater 25:3899–3904

    Article  CAS  Google Scholar 

  31. Wang DW, Li F, Liu M, Lu GQ, Cheng HM (2008) 3D aperiodic hierarchical porous graphitic carbon materials for high-rate electrochemical capacitive energy storage. Angew Chem Int Ed 47:373–376

    Article  CAS  Google Scholar 

  32. Feng D, Lv Y, Wu Z, Dou Y, Han L, Sun Z, **a Y, Zheng G, Zhao D (2011) Free-standing mesoporous carbon thin films with highly ordered pore architectures for nanodevices. J Am Chem Soc 133:15148–15156

    Article  CAS  Google Scholar 

  33. Le VT, Kim H, Ghosh A, Kim J, Chang J, Vu QA, Pham DT, Lee JH, Kim SW, Lee YH (2013) Coaxial fiber supercapacitor using all-carbon material electrodes. ACS Nano 7:5940–5947

    Article  CAS  Google Scholar 

  34. Yue Z, Mangun CL, Economy J (2002) Preparation of fibrous porous materials by chemical activation: 1. ZnCl2 activation of polymer-coated fibers. Carbon 40:1181–1191

    Article  CAS  Google Scholar 

  35. Ma X, Gan L, Liu M, Tripathi PK, Zhao Y, Xu Z, Zhu D, Chen L (2014) Mesoporous size controllable carbon microspheres and their electrochemical performance for supercapacitor electrodes. J Mater Chem A 2:8407–8415

    Article  CAS  Google Scholar 

  36. **ong W, Liu M, Gan L, Lv Y, Li Y, Yang L, Xu Z, Hao Z, Liu H, Chen L (2011) A novel synthesis of mesoporous carbon microspheres for supercapacitor electrodes. J Power Sources 196:10461–10464

    Article  CAS  Google Scholar 

  37. Liu J, Qiao SZ, Liu H, Chen J, Orpe A, Zhao D, Lu GQ (2011) Extension of the stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angew Chem Int Ed 50:5947–5951

    Article  CAS  Google Scholar 

  38. Chang B, Guan D, Tian Y, Yang Z, Dong X (2013) Convenient synthesis of porous carbon nanospheres with tunable pore structure and excellent adsorption capacity. J Hazard Mater 262:256–264

    Article  CAS  Google Scholar 

  39. Khalili NR, Campbell M, Sandi G, Golas J (2000) Production of micro- and mesoporous activated carbon from paper mill sludge I. effect of zinc chloride activation. Carbon 38:1905–1915

    Article  CAS  Google Scholar 

  40. Chang B, Wang Y, Pei K, Yang S, Dong X (2014) ZnCl2-activated porous carbon spheres with high surface area and superior mesoporous structure as an efficient supercapacitor electrode. RSC Adv 4:40546–40552

    Article  CAS  Google Scholar 

  41. Zhao X, Tian H, Zhu M, Tian K, Wang JJ, Kang F, Outlaw RA (2009) Carbon nanosheets as the electrode material in supercapacitors. J Power Sources 194:1208–1212

    Article  CAS  Google Scholar 

  42. Li L, Song H, Chen X (2006) Pore characteristics and electrochemical performance of ordered mesoporous carbons for electric double-layer capacitors. Electrochim Acta 51:5715–5720

    Article  CAS  Google Scholar 

  43. Kim C, Ngoc BTN, Yang KS, Kojima M, Kim YA, Kim YJ, Endo M, Yang SC (2007) Self-sustained thin webs consisting of porous carbon nanofibers for supercapacitors via the electrospinning of polyacrylonitrile solutions containing zinc chloride. Adv Mater 19:2341–2346

    Article  CAS  Google Scholar 

  44. He X, Li R, Han J, Yu M, Wu M (2013) Facile preparation of mesoporous carbons for supercapacitors by one-step microwave-assisted ZnCl2 activation. Mater Lett 94:158–160

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from 521 talent project of ZSTU, the program of Graduate Innovation Research in ZSTU (YCX13001), and the project-sponsored by the Scientific Research Foundation (SRF) for the Returned Overseas Chinese Scholars (ROCS), State Education Ministry (SEM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ** Dong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

The comparison of structure and performance of different porous carbon materials are listed in Table S1 in supplementary data. The comparison of TEM images for MACSs is utilized in Fig. S1. The textural parameters of CS-KOH can be seen in Table S2 and the comparison of electrochemical properties for MACS-8 and CS-KOH (Fig. S2) is also listed. (DOC 5675 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Chang, B., Guan, D. et al. Mesoporous activated carbon spheres derived from resorcinol-formaldehyde resin with high performance for supercapacitors. J Solid State Electrochem 19, 1783–1791 (2015). https://doi.org/10.1007/s10008-015-2789-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2789-8

Keywords

Navigation