Log in

Planar diffusion to macro disc electrodes—what electrode size is required for the Cottrell and Randles-Sevcik equations to apply quantitatively?

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Simulations and experiments are reported which investigate the size of a macro disc electrode necessary to quantitatively show the chronoamperometric or voltammetric behaviour predicted by the Cottrell equation or the Randles-Sevcik equation on the basis of exclusive one-dimensional diffusional mass transport. For experimental time scales of several seconds, the contribution of radial diffusion is seen to be measurable even for electrodes of millimetres in radius. Recommendations on the size of macro electrodes for quantitative study are given and should exceed 4 mm radius in aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The Arrhenius relation is ln D = constant − E aR−1T −1; hence, the slope of the linear fit shown in Fig. 2b provides the activation energy for the diffusion of [Fe(CN)6]4− in the electrolyte upon multiplication by −R.

References

  1. Amatore CA, Deakin MR, Wightman M (1986) Electrochemical kinetics at microelectrodes Part 1. Quasi-reversible electron transfer at cylinders. J Electroanal Chem Interfacial Electrochem 206:23–36. doi:10.1016/0022-0728(86)90253-6

    Article  CAS  Google Scholar 

  2. Amatore C, Deakin MR, Wightman RM (1987) Electrochemical kinetics at microelectrodes: Part IV. Electrochemistry in media of low ionic strength. J Electroanal Chem Interfacial Electrochem 225:49–63. doi:10.1016/0022-0728(87)80004-9

    Article  CAS  Google Scholar 

  3. Bond AM, Oldham KB, Zoski CG (1988) Theory of electrochemical processes at an inlaid disc microelectrode under steady-state conditions. J Electroanal Chem Interfacial Electrochem 245:71–104. doi:10.1016/0022-0728(88)80060-3

    Article  CAS  Google Scholar 

  4. Bond AM (1994) Past, present and future contributions of microelectrodes to analytical studies employing voltammetric detection. A review. Analyst 119:1R–21R. doi:10.1039/AN994190001R

    Article  Google Scholar 

  5. Scholz F (2009) Electroanalytical methods: guide to experiments and applications. Springer Science & Business Media

  6. Montenegro MI, Montenegro I, Queirós MA, Daschbach JL (1991) Microelectrodes: theory and applications: theory and applications. Springer Science & Business Media

  7. Mayrhofer KJJ, Strmcnik D, Blizanac BB et al (2008) Measurement of oxygen reduction activities via the rotating disc electrode method: from Pt model surfaces to carbon-supported high surface area catalysts. Electrochim Acta 53:3181–3188. doi:10.1016/j.electacta.2007.11.057

    Article  CAS  Google Scholar 

  8. Concepcion JJ, Binstead RA, Alibabaei L, Meyer TJ (2013) Application of the rotating ring-disc-electrode technique to water oxidation by surface-bound molecular catalysts. Inorg Chem 52:10744–10746. doi:10.1021/ic402240t

    Article  CAS  Google Scholar 

  9. Simonov AN, Kemppinen P, Pozo-Gonzalo C et al (2014) Aggregation of a Dibenzo[b, def]chrysene based organic photovoltaic material in solution. J Phys Chem B 118:6839–6849. doi:10.1021/jp501220v

    Article  CAS  Google Scholar 

  10. Nicholson RS, Shain I (1964) Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal Chem 36:706–723. doi:10.1021/ac60210a007

    Article  CAS  Google Scholar 

  11. Nicholson RS, Shain I (1965) Theory of stationary electrode polarography for a chemical reaction coupled between two charge transfers. Anal Chem 37:178–190. doi:10.1021/ac60221a002

    Article  CAS  Google Scholar 

  12. Cottrell FG (1902) Z Für Phys Chem 42:385

    Google Scholar 

  13. Compton RG, Banks CE (2011) Understanding Voltammetry, 2nd ed. World Scientific

  14. Fick A (1855) Ueber diffusion. Ann Phys 170:59–86. doi:10.1002/andp.18551700105

    Article  Google Scholar 

  15. Fick A (1855) V. On liquid diffusion. Philos Mag Ser 4(10):30–39. doi:10.1080/14786445508641925

    Google Scholar 

  16. Morris GP, Simonov AN, Mashkina EA et al (2013) A comparison of fully automated methods of data analysis and computer assisted heuristic methods in an electrode kinetic study of the pathologically variable [Fe(CN)6]3–/4– process by AC voltammetry. Anal Chem 85:11780–11787. doi:10.1021/ac4022105

    Article  CAS  Google Scholar 

  17. Bentley CL, Bond AM, Hollenkamp AF et al (2014) Applications of convolution voltammetry in electroanalytical chemistry. Anal Chem 86:2073–2081. doi:10.1021/ac4036422

    Article  CAS  Google Scholar 

  18. Simonov AN, Morris GP, Mashkina EA et al (2014) Inappropriate Use of the quasi-reversible electrode kinetic model in simulation-experiment comparisons of voltammetric processes that approach the reversible limit. Anal Chem 86:8408–8417. doi:10.1021/ac5019952

    Article  CAS  Google Scholar 

  19. Norouzi P, Ganjali MR, Daneshgar P, Mohammadi A (2007) Fast Fourier transform continuous cyclic voltammetry development as a highly sensitive detection system for ultra trace monitoring of thiamine. Anal Lett 40:547–559. doi:10.1080/00032710600964874

    Article  CAS  Google Scholar 

  20. Ebrahimi B, Shojaosadati SA, Daneshgar P et al (2011) Performance evaluation of fast Fourier-transform continuous cyclic-voltammetry pesticide biosensor. Anal Chim Acta 687:168–176. doi:10.1016/j.aca.2010.12.005

    Article  CAS  Google Scholar 

  21. Amatore C, Pebay C, Thouin L et al (2010) Difference between ultramicroelectrodes and microelectrodes: influence of natural convection. Anal Chem 82:6933–6939. doi:10.1021/ac101210r

    Article  CAS  Google Scholar 

  22. Amatore C, Klymenko OV, Svir I (2012) Importance of correct prediction of initial concentrations in voltammetric scans: contrasting roles of thermodynamics, kinetics, and natural convection. Anal Chem 84:2792–2798. doi:10.1021/ac203188b

    Article  CAS  Google Scholar 

  23. Barnes AS, Streeter I, Compton RG (2008) On the use of digital staircase ramps for linear sweep voltammetry at microdisc electrodes: large step potentials significantly broaden and shift voltammetric peaks. J Electroanal Chem 623:129–133. doi:10.1016/j.jelechem.2008.06.022

    Article  CAS  Google Scholar 

  24. Ward KR, Compton RG (2014) Quantifying the apparent “Catalytic” effect of porous electrode surfaces. J Electroanal Chem 724:43–47. doi:10.1016/j.jelechem.2014.04.009

    Article  CAS  Google Scholar 

  25. Ward KR, Gara M, Lawrence NS et al (2013) Nanoparticle modified electrodes can show an apparent increase in electrode kinetics due solely to altered surface geometry: the effective electrochemical rate constant for non-flat and non-uniform electrode surfaces. J Electroanal Chem 695:1–9. doi:10.1016/j.jelechem.2013.02.012

    Article  CAS  Google Scholar 

  26. Compton RG, Laborda E, Ward KR (2013) Understanding voltammetry: simulation of electrode processes. Imperial College Press, London

    Google Scholar 

  27. Eloul S, Compton RG (2014) Shielding of a microdisc electrode surrounded by an adsorbing surface. Chem Electro Chem 1:917–924. doi:10.1002/celc.201400005

    CAS  Google Scholar 

  28. Konopka SJ, McDuffie B (1970) Diffusion coefficients of ferri- and ferrocyanide ions in aqueous media, using twin-electrode thin-layer electrochemistry. Anal Chem 42:1741–1746. doi:10.1021/ac50160a042

    Article  CAS  Google Scholar 

  29. Lide DR (2008) CRC handbook of Chemistry and Physics, 89th ed. Taylor & Francis Group

  30. Shoup D, Szabo A (1982) Chronoamperometric current at finite disk electrodes. J Electroanal Chem Interfacial Electrochem 140:237–245. doi:10.1016/0022-0728(82)85171-1

    Article  CAS  Google Scholar 

  31. Heinze J (1981) Diffusion processes at finite (micro) disk electrodes solved by digital simulation. J Electroanal Chem Interfacial Electrochem 124:73–86. doi:10.1016/S0022-0728(81)80285-9

    Article  CAS  Google Scholar 

  32. Heinze J, Storzbach M (1991) Digital Simulation of Mass Transport to Ultramicroelectrodes. Conference Proceeding NATO Advanced Study Inst on Microelectrodes: Theory and Applications

  33. Britz D, Oldham KB, Østerby O (2009) Strategies for dam** the oscillations of the alternating direction implicit method of simulation of diffusion-limited chronoamperometry at disk electrodes. Electrochim Acta 54:4822–4828. doi:10.1016/j.electacta.2009.03.087

    Article  CAS  Google Scholar 

  34. Britz D, Østerby O, Strutwolf J (2012) Minimum grid digital simulation of chronoamperometry at a disk electrode. Electrochim Acta 78:365–376. doi:10.1016/j.electacta.2012.06.009

    Article  CAS  Google Scholar 

  35. Klymenko OV, Evans RG, Hardacre C et al (2004) Double potential step chronoamperometry at microdisk electrodes: simulating the case of unequal diffusion coefficients. J Electroanal Chem 571:211–221. doi:10.1016/j.jelechem.2004.05.012

    Article  CAS  Google Scholar 

  36. **ong L, Aldous L, Henstridge MC, Compton RG (2012) Investigation of the optimal transient times for chronoamperometric analysis of diffusion coefficients and concentrations in non-aqueous solvents and ionic liquids. Anal Methods 4:371. doi:10.1039/c1ay05667k

    Article  CAS  Google Scholar 

  37. Paddon CA, Bhatti FL, Donohoe TJ, Compton RG (2006) Cryo-electrochemistry in tetrahydrofuran: the electrochemical reduction of a phenyl thioether: [(3-{[trans-4-(Methoxymethoxy)cyclohexyl]oxy}propyl)thio]benzene. J Electroanal Chem 589:187–194. doi:10.1016/j.jelechem.2006.02.010

    Article  CAS  Google Scholar 

Download references

Acknowledgments

KT was supported by a Marie Curie Intra European Fellowship (Grant Agreement no. 327706) within the 7th European Community Framework Programme. SE and RGC acknowledge funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement no. 320403.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard G. Compton.

Additional information

Paper submitted for the ‘Fletcher Festschrift’ issue of Journal of Solid State Electrochemistry in admiration of an outstanding scientist and much valued electrochemistry colleague.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngamchuea, K., Eloul, S., Tschulik, K. et al. Planar diffusion to macro disc electrodes—what electrode size is required for the Cottrell and Randles-Sevcik equations to apply quantitatively?. J Solid State Electrochem 18, 3251–3257 (2014). https://doi.org/10.1007/s10008-014-2664-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2664-z

Keywords

Navigation