Log in

Nanostructured Fe2O3–graphene composite as a novel electrode material for supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nanostructured Fe2O3–graphene composite was successfully fabricated through a facile solution-based route under mild hydrothermal conditions. Well-crystalline Fe2O3 nanoparticles with 30–60 nm in size are highly encapsulated in graphene nanosheet matrix, as demonstrated by various characterization techniques. As electrode materials for supercapacitors, the as-obtained Fe2O3–graphene nanocomposite exhibits large specific capacitance (151.8 F g−1 at 1 A g−1), good rate capability (120 F g−1 at 6 A g−1), and excellent cyclability. The significantly enhanced electrochemical performance compared with pure graphene and Fe2O3 nanoparticles may be attributed to the positive synergetic effect between Fe2O3 and graphene. In virtue of their superior electrochemical performance, they will be promising electrode materials for high-performance supercapacitors applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arico AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV (2005) Nat Mater 4:366–377

    Article  CAS  Google Scholar 

  2. Simon P, Gogotsi Y (2008) Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  3. Conway BE (1999) Electrochemical supercapacitors. Kluwer Academic, New York

    Google Scholar 

  4. Miller JR, Simon P (2008) Science 321:651–652

    Article  CAS  Google Scholar 

  5. Malachi N, Soffer A, Aurbach D (2011) J Solid State Electrochem 15:1563–1578

    Article  Google Scholar 

  6. Brezesinski T, Wang J, Tolbert SH, Dunn B (2010) Nat Mater 9:146–151

    Article  CAS  Google Scholar 

  7. Wang HB, Liu ZH, Chen X, Han PX, Dong SM, Cui GL (2011) J Solid State Electrochem 15:1179–1184

    Article  CAS  Google Scholar 

  8. Baughman RH, Zakhidov AA, de Heer WA (2002) Science 297:787–792

    Article  CAS  Google Scholar 

  9. Liu R, Lee SB (2008) J Am Chem Soc 130:2942–2943

    Article  CAS  Google Scholar 

  10. Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS (2008) Nano Lett 8:3498–3502

    Article  CAS  Google Scholar 

  11. Zhao X, Sanchez BM, Dobson P, Grant P (2011) Nanoscale 3:839–855

    Article  CAS  Google Scholar 

  12. Winter M, Brodd RJ (2004) Chem Rev 104:4245–4269

    Article  CAS  Google Scholar 

  13. Zheng JP, Jow TR (1995) J Electrochem Soc 142:L6–L8

    Article  CAS  Google Scholar 

  14. Toon YS, Cho WI, Lim JH, Choi DJ (2001) J Power Sources 101:126–129

    Article  Google Scholar 

  15. Liu KC, Anderson MA (1996) J Electrochem Soc 143:124–130

    Article  CAS  Google Scholar 

  16. Toupin M, Brousse T, Belanger D (2002) Chem Mater 14:3946–3950

    Article  CAS  Google Scholar 

  17. Wei WF, Cui XW, Chen WX, Ivey DG (2011) Chem Soc Rev 40:1697–1721

    Article  CAS  Google Scholar 

  18. Lang JW, Kong LB, Wu WJ, Luo YC, Kang L (2008) Chem Commun 35:4213–4215

    Article  Google Scholar 

  19. Lu Q, Lattanzi MW, Chen YP, Kou XM, Li WF, Fan X, Unruh KM, Chen JG, **ao JQ (2011) Angew Chem Int Ed 50:6847–6850

    Article  CAS  Google Scholar 

  20. Lin C, Ritter JA, Popov BN (1998) J Electrochem Soc 145:4097–4102

    Article  CAS  Google Scholar 

  21. Reddy MV, Yu T, Sow CH, Shen ZX, Lim CT, Rao GVS, Chowdari BVR (2007) Adv Funct Mater 17:2792–2799

    Article  CAS  Google Scholar 

  22. Wu NL, Wang SY, Han CY, Wu DS, Shiue L-R (2003) J Power Sources 113:173–178

    Article  CAS  Google Scholar 

  23. Nagarajan N, Zhitomirsky I (2006) J Appl Electrochem 36:1399–1405

    Article  CAS  Google Scholar 

  24. Wu MS, Lee RH, Jow JJ, Yang WD, Hsieh CY, Weng B (2009) J Electrochem Solid State Lett 12:A1–A4

    Article  CAS  Google Scholar 

  25. Wang DW, Wang QH, Wang TM (2011) Nanotechnology 22:135604

    Article  Google Scholar 

  26. **e KY, Li J, Lai YQ, Lu W, Zhang ZA, Liu YX, Zhou LM, Huang HT (2011) Electrochem Commun 13:657–660

    Article  CAS  Google Scholar 

  27. Sassin MB, Mansour AN, Pettigrew KA, Rolison DR, Long JW (2010) ACS Nano 4:4505–4514

    Article  CAS  Google Scholar 

  28. Singh V, Joung D, Zhai L, Das S, Khondaker S, Seal S (2011) Prog Mater Sci 56:1178–1271

    Article  CAS  Google Scholar 

  29. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669

    Article  CAS  Google Scholar 

  30. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS (2007) Nature 448:457–460

    Article  CAS  Google Scholar 

  31. Geim AK, Novoselov KS (2007) Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  32. Zhu XJ, Zhu W, Murali YS, Stollers MD, Ruoff RS (2011) ACS Nano 5:3333–3338

    Article  CAS  Google Scholar 

  33. Wang HL, Casalongue HS, Liang YY, Dai HJ (2010) J Am Chem Soc 132:7472–7477

    Article  CAS  Google Scholar 

  34. Hummers WS, Offeman RE (1958) J Am Chem Soc 8:1339–1339

    Google Scholar 

  35. Wang DW, Wang QH, Wang TM (2011) Inorg Chem 50:6482–6492

    Article  CAS  Google Scholar 

  36. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Nat Nanotechnol 3:101–105

    Article  CAS  Google Scholar 

  37. Wu ZS, Ren WC, Wen L, Gao LB, Zhao JP, Chen ZP, Zhou MG, Li F, Cheng HM (2010) ACS Nano 4:3187–3194

    Article  CAS  Google Scholar 

  38. Bai H, Li C, Shi QG (2011) Adv Mater 23:1089–1115

    Article  CAS  Google Scholar 

  39. Zhang LL, Zhao XS (2009) Chem Soc Rev 38:2520–2531

    Article  CAS  Google Scholar 

  40. Wang HL, Robinson JT, Diankov G, Dai HJ (2010) J Am Chem Soc 132:3270–3271

    Article  CAS  Google Scholar 

  41. Yariv S, Mendelovici E (1979) Appl Spectrosc 33:410–411

    Article  CAS  Google Scholar 

  42. Apte SK, Naik SD, Sonawane RS, Kale BB (2007) J Am Ceram Soc 90:412–414

    Article  CAS  Google Scholar 

  43. Wu CZ, Yin P, Zhu X, Ouyang C, **e Y (2006) J Phys Chem B 110:17806–17812

    Article  CAS  Google Scholar 

  44. Zhu W, Murali S, Stoller MD, Ganesh KJ, Cai WW, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Science 332:1537–1541

    Article  CAS  Google Scholar 

  45. Fan ZJ, Yan J, Zhi LJ, Zhang Q, Wei T, Feng J, Zhang ML, Qian WZ, Wei F (2010) Adv Mater 22:3723–3728

    Article  CAS  Google Scholar 

  46. Wang B, Park J, Wang CY, Ahn H, Wang GX (2010) Electrochim Acta 55:6812–6817

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the National Science Foundation for Distinguished Young Scholars of China (grant no. 51025517), and National Defense Basic Scientific Research Project (A1320110011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qihua Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 965 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Li, Y., Wang, Q. et al. Nanostructured Fe2O3–graphene composite as a novel electrode material for supercapacitors. J Solid State Electrochem 16, 2095–2102 (2012). https://doi.org/10.1007/s10008-011-1620-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1620-4

Keywords

Navigation