Log in

Electrical properties of gadolinia-doped ceria thin films deposited by sputtering in view of SOFC application

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Gadolinia-doped ceria (GDC) remains, up to now, the most promising candidate for replacing yttria-stabilised zirconia (YSZ) as electrolyte for solid oxide fuel cells (SOFC) operating at intermediate temperature. Literature data point out that GDC could be used as electrolyte, anode material, or interlayers for avoiding the chemical interactions occurring at the interfaces. In the present work, GDC thin layers were produced by d.c. reactive magnetron sputtering and deposited over a thickness domain between 450 nm and 5.5 µm. According to our knowledge, the deposition of GDC sputtered layers has never been reported. The physicochemical features of these thin films have been characterised by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Impedance measurements have been carried out in order to determine the electrical properties of electrolyte thin films and in particular their ionic conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a,b
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Perry Murray E, Tsai T, Barnett SA (1999) Nature 400:649

    Article  Google Scholar 

  2. Park S, Vohs JM, Gorte RJ (2000) Nature 404:265

    Article  CAS  PubMed  Google Scholar 

  3. Hibino T, Hashimoto A, Inoue T, Tokuno JI, Yoshida SI, Sano M (2000) Science 288:2031

    Article  CAS  PubMed  Google Scholar 

  4. Riess I, Gödickemeier M, Gauckler LJ (1996) Solid State Ionics 90:91

    Article  CAS  Google Scholar 

  5. Mori T, Yamamura H (1998) J Mater Synth Process 6:N3

    Google Scholar 

  6. Kim N, Kim NH, Lee D (2000) J Power Sources 90:139

    Article  CAS  Google Scholar 

  7. De Souza S, Visco SJ, De Jonghe LC (1997) J Electrochem Soc 144:L35

    Google Scholar 

  8. Inoue T, Setoguchi T, Eguchi K, Arai H (1989) Solid State Ionics 35:285

    Article  CAS  Google Scholar 

  9. Marques FMB, Navarro LM (1997) Solid State Ionics 98:191

    Article  Google Scholar 

  10. Wang LS, Barnett SA (1992) J Electrochem Soc 139:2567

    CAS  Google Scholar 

  11. Srivastana PK, Quach T, Duan Y, Donelson R, Jiang SP, Ciacchi FT, Badwall SPS (1997) Solid State Ionics 99:311

    Article  Google Scholar 

  12. Hayashi K, Yamamoto O, Nishigaki Y, Minoura H (1997) Solid State Ionics 98:49

    Article  CAS  Google Scholar 

  13. Chan SH, Chen XJ, Khor KA (2003) Solid State Ionics 158:29

    Article  CAS  Google Scholar 

  14. Lang M, Franco T, Schiller G, Wagner N (2002) J Appl Electrochem 32:871

    Article  CAS  Google Scholar 

  15. Suzuki T, Kosacki I, Anderson HU (2002) Solid State Ionics 151:111

    Article  CAS  Google Scholar 

  16. Peng R, **a C, Liu X, Peng D, Meng G (2002) Solid State Ionics 152:561

    Article  Google Scholar 

  17. Gourba E, Ringuedé A, Cassir M, Billard A, Päiväsaari J, Niinistö J, Putkonen M, Niinistö L (2003) Ionics 9:15

    CAS  Google Scholar 

  18. Perry F, Lelait L, Pigeat P, Billard A, Frantz C (1999) Vide Sci Tech Appl 291:285

    Google Scholar 

  19. Stoney G (1909) Proc R Soc Lond A 82:172

    CAS  Google Scholar 

  20. Boukamp BA (1986) Solid State Ionics 20:31

    CAS  Google Scholar 

  21. Billard A, Mercs D, Perry F, Frantz C (1999) Surf Coat Technol 116/119:721

    Google Scholar 

  22. Tianshu Z, Hing P, Huang H, Kilner J (2002) Solid State Ionics 148:567

    Article  CAS  Google Scholar 

  23. Faber J, Geoffroy C, Roux A, Sylvestre A, Abélard P (1989) Appl Phys A 49:225

    Google Scholar 

  24. Srivastava PK, Quach T, Duan YY, Donelson R, Jiang SP, Ciacchi FT, Badwall SPS (1997) Solid State Ionics 99:311

    Article  Google Scholar 

  25. Schouler E (1979) PhD thesis, Grenoble, France

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ringuedé.

Additional information

Presented at the OSSEP Workshop “Ionic and Mixed Conductors: Methods and Processes”, Aveiro, Portugal, 10–12 April 2003

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gourba, E., Briois, P., Ringuedé, A. et al. Electrical properties of gadolinia-doped ceria thin films deposited by sputtering in view of SOFC application. J Solid State Electrochem 8, 633–637 (2004). https://doi.org/10.1007/s10008-004-0503-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-004-0503-3

Keywords

Navigation