Log in

Properties of the endogenous components of the thioredoxin system in the psychrophilic eubacterium Pseudoalteromonas haloplanktis TAC 125

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The endogenous components of the thioredoxin system in the Antarctic eubacterium Pseudoalteromonas haloplanktis have been purified and characterised. The temperature dependence of the activities sustained by thioredoxin (PhTrx) and thioredoxin reductase (PhTrxR) pointed to their adaptation in the cold growth environment. PhTrxR was purified as a flavoenzyme and its activity was significantly enhanced in the presence of molar concentration of monovalent cations. The energetics of the partial reactions leading to the whole electron transfer from NADPH to the target protein substrate in the reconstituted thioredoxin system was also investigated. While the initial electron transfer from NADPH to PhTrxR was energetically favoured, the final passage to the heterologous protein substrate enhanced the energetic barrier of the whole process. The energy of activation of the heat inactivation process essentially reflected the psychrophilic origin of PhTrxR. Vice versa, PhTrx possessed an exceptional heat resistance (half-life, 4.4 h at 95 °C), ranking this protein among the most thermostable enzymes reported so far in psychrophiles. PhTrxR was covalently modified by glutathione, mainly by its oxidised or nitrosylated forms. A mutagenic analysis realised on three non catalytic cysteines of the flavoenzyme allowed the identification of C303 as the target for the S-glutathionylation reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Ap:

Aeropyrum pernix

Ec :

Escherichia coli

Ph :

Pseudoalteromonas haloplanktis

DTNB:

5,5′-dithiobis-2-nitrobenzoic acid

DTT:

Dithiothreitol

GSH:

Reduced glutathione

GSSG:

Oxidised glutathione

GSNO:

Nitrosylated glutathione

PMSF:

Phenylmethanesulphonyl fluoride

TNB:

2-nitro-5-thiobenzoate

Trx:

Thioredoxin

TrxR:

Thioredoxin reductase

Trx-S2 and Trx-(SH)2 :

Oxidised and reduced form of Trx, respectively

k in :

Heat inactivation rate constant

References

  • Arnér ESJ, Holmgren A (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267:6102–6109

    Article  PubMed  Google Scholar 

  • Arscott LD, Gromer S, Schirmer RH, Becker K, Williams CH Jr (1997) The mechanism of thioredoxin reductase from human placenta is similar to the mechanisms of lipoamide dehydrogenase and glutathione reductase and is distinct from the mechanism of thioredoxin reductase from Escherichia coli. Proc Natl Acad Sci 94:3621–3626

    Article  PubMed  CAS  Google Scholar 

  • Birolo L, Tutino ML, Fontanella B, Gerday C, Mainolfi K, Pascarella S, Sannia G, Vinci F, Marino G (2000) Aspartate aminotransferase from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC 125. Cloning, expression, properties, and molecular modelling. Eur J Biochem 267:2790–2802

    Article  PubMed  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Castellano I, Di Maro A, Ruocco MR, Chambery A, Parente A, Di Martino MT, Parlato G, Masullo M, De Vendittis E (2006) Psychrophilic superoxide dismutase from Pseudoalteromonas haloplanktis: biochemical characterization and identification of a highly reactive cysteine residue. Biochimie 88:1377–1389

    Article  PubMed  CAS  Google Scholar 

  • Castellano I, Ruocco MR, Cecere F, Di Maro A, Chambery A, Michniewicz A, Parlato G, Masullo M, De Vendittis E (2008) Glutathionylation of the iron superoxide dismutase from the psychrophilic eubacterium Pseudoalteromonas haloplanktis. Biochim Biophys Acta 1784:816–826

    PubMed  CAS  Google Scholar 

  • Castellano I, Cecere F, De Vendittis A, Cotugno R, Chambery A, Di Maro A, Michniewicz A, Parlato G, Masullo M, Avvedimento EV, De Vendittis E, Ruocco MR (2009) Rat mitochondrial manganese superoxide dismutase: amino acid positions involved in covalent modifications, activity, and heat stability. Biopolymers 91:1215–1226

    Article  PubMed  CAS  Google Scholar 

  • Chae HZ, Chung SJ, Rhee SG (1994) Thioredoxin-dependent peroxide reductase from yeast. J Biol Chem 269:27670–27678

    PubMed  CAS  Google Scholar 

  • Clark WM (1960) Oxidation-reduction potentials of organic systems. The Williams & Wilkins Co., Baltimore

    Google Scholar 

  • Cotugno R, Ruocco MR, Marco S, Falasca P, Evangelista G, Raimo G, Chambery A, Di Maro A, Masullo M, De Vendittis E (2009) Differential cold-adaptation among protein components of the thioredoxin system in the psychrophilic eubacterium Pseudoalteromonas haloplanktis TAC 125. Mol BioSyst 5:519–528

    Article  PubMed  CAS  Google Scholar 

  • De Vendittis E, Castellano I, Cotugno R, Ruocco MR, Raimo G, Masullo M (2008) Adaptation of model proteins from cold to hot environments involves continuous and small adjustments of average parameters related to amino acid composition. J Theor Biol 250:156–171

    Article  PubMed  Google Scholar 

  • De Vendittis A, Amato M, Mickniewicz A, Parlato G, De Angelis A, Castellano I, Rullo R, Riccitiello F, Rengo S, Masullo M, De Vendittis E (2010) Regulation of the properties of superoxide dismutase from the dental pathogenic microorganism Streptococcus mutans by iron- and manganese-bound co-factor. Mol BioSyst 6:1973–1982

    Article  PubMed  Google Scholar 

  • Ejiri SI, Weissbach H, Brot N (1979) Reduction of methionine sulfoxide to methionine by Escherichia coli. J Bacteriol 139:161–164

    PubMed  CAS  Google Scholar 

  • Evangelista G, Falasca P, Ruggiero I, Masullo M, Raimo G (2009) Molecular and functional characterization of polynucleotide phosphorylase from the Antarctic eubacterium Pseudoalteromonas haloplanktis. Protein Pept Lett 16:999–1005

    Article  PubMed  CAS  Google Scholar 

  • Gasdaska PY, Berggren MM, Berry MJ, Powis G (1999) Cloning, sequencing and functional expression of a novel human thioredoxin reductase. FEBS Lett 442:105–111

    Article  PubMed  CAS  Google Scholar 

  • Ghisla S, Massey V (1989) Mechanisms of flavoprotein-catalyzed reactions. Eur J Biochem 181:1–17

    Article  PubMed  CAS  Google Scholar 

  • Gilbert HF (1990) Molecular and cellular aspects of thiol-disulfide exchange. Adv Enzymol Relat Areas Mol Biol 63:69–172

    PubMed  CAS  Google Scholar 

  • Grimaldi P, Ruocco MR, Lanzotti MA, Ruggiero A, Ruggiero I, Arcari P, Vitagliano L, Masullo M (2008) Characterisation of the components of the thioredoxin system in the archaeon Sulfolobus solfataricus. Extremophiles 12:553–562

    Article  PubMed  CAS  Google Scholar 

  • Hernandez HH, Jaquez OA, Hamill LJ, Elliot SJ, Drennan CL (2008) Thioredoxin reductase from Thermoplasma acidophilum: a new twist on redox regulation. Biochemistry 47:9728–9737

    Article  PubMed  CAS  Google Scholar 

  • Hirt RP, Müller S, Embley TM, Coombs GH (2002) The diversity and evolution of thioredoxin reductase: new perspectives. Trends Parasitol 18:302–308

    Article  PubMed  CAS  Google Scholar 

  • Holmgren A (1979a) Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide. J Biol Chem 254:9627–9632

    PubMed  CAS  Google Scholar 

  • Holmgren A (1979b) Reduction of disulfides by thioredoxin. Exceptional reactivity of insulin and suggested functions of thioredoxin in mechanism of hormone action. J Biol Chem 254:9113–9119

    PubMed  CAS  Google Scholar 

  • Holmgren A (1985) Thioredoxin. Annu Rev Biochem 54:237–271

    Article  PubMed  CAS  Google Scholar 

  • Holmgren A (1989) Thioredoxin and glutaredoxin systems. J Biol Chem 264:13963–13966

    PubMed  CAS  Google Scholar 

  • Huber HE, Tabor S, Richardson CC (1987) Escherichia coli thioredoxin stabilizes complexes of bacteriophage T7 DNA polymerase and primed templates. J Biol Chem 262:16224–16232

    PubMed  CAS  Google Scholar 

  • Jeon SJ, Ishikawa K (2002) Identification and characterization of thioredoxin and thioredoxin reductase from Aeropyrum pernix K1. Eur J Biochem 269:5423–5430

    Article  PubMed  CAS  Google Scholar 

  • Kanzok SM, Fechner A, Bauer H, Ulschmid JK, Müller HM, Botella-Munoz J, Schneuwly S, Schirmer R, Becker K (2001) Substitution of the thioredoxin system for glutathione reductase in Drosophila melanogaster. Science 291:643–646

    Article  PubMed  CAS  Google Scholar 

  • Kashima Y, Ishikawa K (2003) A hyperthermostable novel protein-disulfide oxidoreductase is reduced by thioredoxin reductase from hyperthermophilic archaeon Pyrococcus horikoshii. Arch Biochem Biophys 418:179–185

    Article  PubMed  CAS  Google Scholar 

  • Kern R, Malki A, Holmgren A, Richarme G (2003) Chaperone properties of Escherichia coli thioredoxin and thioredoxin reductase. Biochem J 371:965–972

    Article  PubMed  CAS  Google Scholar 

  • Krause G, Lundstrom J, Barea JL, Pueyo de la Cuesta C, Holmgren A (1991) Mimicking the active site of protein disulfide isomerase by substitution of proline 34 in Escherichia coli thioredoxin. J Biol Chem 266:9494–9500

    PubMed  CAS  Google Scholar 

  • Ladenstein R, Ren B (2006) Protein disulfides and protein disulfide oxidoreductases in hyperthermophiles. FEBS J 273:4170–4185

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lennon BW, Williams CH Jr, Ludwig ML (2000) Twists in catalysis: alternating conformations of Escherichia coli thioredoxin reductase. Science 289:1190–1194

    Article  PubMed  CAS  Google Scholar 

  • Luthman M, Holmgren A (1982) Rat liver thioredoxin and thioredoxin reductase: purification and characterization. Biochemistry 21:6628–6633

    Article  PubMed  CAS  Google Scholar 

  • Madonna S, Papa R, Birolo L, Autore F, Doti N, Marino G, Quemeneur E, Sannia G, Tutino ML, Duilio A (2006) The thiol-disulfide oxidoreductase system in the cold-adapted bacterium Pseudoalteromonas haloplanktis TAC 125: discovery of a novel disulfide oxidoreductase enzyme. Extremophiles 10:41–51

    Article  PubMed  CAS  Google Scholar 

  • Masullo M, Raimo G, Bocchini V (1993) Resistance of archaebacterial aEF-1alpha·GDP against denaturation by heat and urea. Biochim Biophys Acta 1162:35–39

    Article  PubMed  CAS  Google Scholar 

  • Masullo M, Arcari P, de Paola B, Parmeggiani A, Bocchini V (2000) Psychrophilic elongation factor Tu from the Antarctic Moraxella s. Tac II25: biochemical characterization and cloning of the encoding gene. Biochemistry 39:15531–15539

    Article  PubMed  CAS  Google Scholar 

  • Matthews JR, Wakasugi N, Virelizier JL, Yodoi J, Hay RT (1992) Thioredoxin regulates the DNA binding activity of NF-kappa B by reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res 20:3821–3830

    Article  PubMed  CAS  Google Scholar 

  • Medigue C, Krin E, Pascal G, Barbe V, Bernsel A, Bertin PN, Cheung F, Cruveiller S, D’Amico S, Duilio A, Fang G, Feller G, Ho C, Mangenot S, Marino G, Nilsson J, Parrilli E, Rocha EPC, Rouy Z, Sekowska A, Tutino ML, Vallenet D, von Heijne G, Danchin A (2005) Co** with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 15:1325–1335

    Article  PubMed  CAS  Google Scholar 

  • Miranda-Vizuete A, Damdimopoulos AE, Gustafsson J, Spyrou G (1997) Cloning, expression, and characterization of a novel Escherichia coli thioredoxin. J Biol Chem 272:30841–30847

    Article  PubMed  CAS  Google Scholar 

  • Moore EC, Reichard P, Thelander L (1964) Enzymatic synthesis of deoxyribonucleotides. V. Purification and properties of thioredoxin reductase from Escherichia coli B. J Biol Chem 239:3445–3452

    PubMed  CAS  Google Scholar 

  • Pörtner HO, Peck L, Somero G (2007) Thermal limits and adaptation in marine Antarctic ectotherms: and integrative view. Phil Trans R Soc B 362:2233–2258

    Article  PubMed  Google Scholar 

  • Raimo G, Lombardo B, Masullo M, Lamberti A, Longo O, Arcari P (2004) Elongation factor Ts from the Antarctic eubacterium Pseudoalteromonas haloplanktis TAC 125: biochemical characterization and cloning of the encoding gene. Biochemistry 43:14759–14766

    Article  PubMed  CAS  Google Scholar 

  • Ruocco MR, Ruggiero A, Masullo L, Arcari P, Masullo M (2004) A 35 kDa NAD(P)H oxidase previously isolated from the archaeon Sulfolobus solfataricus is instead a thioredoxin reductase. Biochimie 86:883–892

    Article  PubMed  CAS  Google Scholar 

  • Schenk H, Klein M, Erdbrügger W, Dröge W, Schulze-Osthoff K (1994) Distinct effects of thioredoxin and antioxidants on the activation of transcription factors NF-kappa B and AP-1. Proc Natl Acad Sci USA 91:1672–1676

    Article  PubMed  CAS  Google Scholar 

  • Spyrou G, Enmark E, Miranda-Vizuete A, Gustaffson J (1997) Cloning and expression of a novel mammalian thioredoxin. J Biol Chem 272:2936–2941

    Article  PubMed  CAS  Google Scholar 

  • Srimathi S, Jayaraman G, Feller G, Danielsson B, Narayanan PR (2007) Intrinsic halotolerance of the psychrophilic α-amylase from Pseudoalteromonas haloplanktis. Extremophiles 11:505–515

    Article  PubMed  CAS  Google Scholar 

  • Tsang ML, Schiff JA (1976) Sulfate-reducing pathway in Escherichia coli involving bound intermediates. J Bacteriol 125:923–933

    PubMed  CAS  Google Scholar 

  • Williams CH Jr (1995) Mechanism and structure of thioredoxin reductase from Escherichia coli. FASEB J 9:1267–1276

    PubMed  CAS  Google Scholar 

  • Windle HJ, Fox A, Ni Eidhin D, Kelleher D (2000) The thioredoxin system of Helicobacter pylori. J Biol Chem 275:5081–5089

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from MIUR, PRIN 2009 (Rome) awarded to MM, EDV, GR.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Emmanuele De Vendittis or Gennaro Raimo.

Additional information

Communicated by F. Robb.

Authors P. Falasca and G. Evangelista equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falasca, P., Evangelista, G., Cotugno, R. et al. Properties of the endogenous components of the thioredoxin system in the psychrophilic eubacterium Pseudoalteromonas haloplanktis TAC 125. Extremophiles 16, 539–552 (2012). https://doi.org/10.1007/s00792-012-0453-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-012-0453-0

Keywords

Navigation