Log in

Small heat shock proteins prevent aggregation of citrate synthase and bind to the N-terminal region which is absent in thermostable forms of citrate synthase

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Citrate synthase (CS) is often used in chaperone assays since this thermosensitive enzyme aggregates at moderately increased temperatures. Small heat shock proteins (sHsps) are molecular chaperones specialized in preventing the aggregation of other proteins, termed substrate proteins, under conditions of transient heat stress. To investigate the mechanism whereby sHsps bind to and stabilize a substrate protein, we here used peptide array screening covering the sequence of porcine CS (P00889). Strong binding of sHsps was detected to a peptide corresponding to the most N-terminal α-helix in CS (amino acids Leu13 to Gln27). The N-terminal α-helices in the CS dimer intertwine with the C-terminus in the other subunit and together form a stem-like structure which is protruding from the CS dimer. This stem-like structure is absent in thermostable forms of CS from thermophilic archaebacteria like Pyrococcus furiosus and Sulfolobus solfatacarium. These data therefore suggest that thermostabilization of thermosensitive CS by sHsps is achieved by stabilization of the C- and N-terminae in the protruding thermosensitive softspot, which is absent in thermostable forms of the CS dimer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arnott MA, Michael RA, Thompson CR, Hough DW, Danson MJ (2000) Thermostability and thermoactivity of citrate synthases from the thermophilic and hyperthermophilic archaea, Thermoplasma acidophilum and Pyrococcus furiosus. J Mol Biol 304:657–668

    Article  PubMed  CAS  Google Scholar 

  • Arrigo AP (2005) In search of the molecular mechanism by which small stress proteins counteract apoptosis during cellular differentiation. J Cell Biochem 94:241–246

    Article  PubMed  CAS  Google Scholar 

  • Basha E, Lee GJ, Breci LA, Hausrath AC, Buan NR, Giese KC, Vierling E (2004) The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions. J Biol Chem 279:7566–7575

    Article  PubMed  CAS  Google Scholar 

  • Blennow A, Surin BP, Ehring H, McLennan NF, Spangfort MD (1995) Isolation and biochemical characterization of highly purified Escherichia coli molecular chaperone Cpn60 (GroEL) by affinity chromatography and urea-induced monomerization. Biochim Biophys Acta 1252:69–78

    PubMed  Google Scholar 

  • Boros S, Kamps B, Wunderink L, de Bruijn W, de Jong WW, Boelens WC (2004) Transglutaminase catalyzes differential crosslinking of small heat shock proteins and amyloid-beta. FEBS Lett 576:57–62

    Article  PubMed  CAS  Google Scholar 

  • Buchner J, Ehrnsperger M, Gaestel M, Walke S (1998a) Purification and characterization of small heat shock proteins. Methods Enzymol 290:339–349

    PubMed  CAS  Google Scholar 

  • Buchner J, Grallert H, Jakob U (1998b) Analysis of chaperone function using citrate synthase as non-native substrate protein. Methods Enzymol 290:323–338

    Article  PubMed  CAS  Google Scholar 

  • Clark JI, Muchowski PJ (2000) Small heat-shock proteins and their potential role in human disease. Curr Opin Struct Biol 10:52–59

    Article  PubMed  CAS  Google Scholar 

  • Ehrnsperger M, Graber S, Gaestel M, Buchner J (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J 16:221–229

    Article  PubMed  CAS  Google Scholar 

  • Frank R (1992) Spot-synthesis: an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 48:9217–9232

    Article  CAS  Google Scholar 

  • Frank R (2002) The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports—principles and applications. J Immunol Methods 267:13–26

    Article  PubMed  CAS  Google Scholar 

  • Gustavsson N, Kokke BP, Anzelius B, Boelens WC, Sundby C (2001) Substitution of conserved methionines by leucines in chloroplast small heat shock protein results in loss of redox-response but retained chaperone-like activity. Protein Sci 10:1785–1793

    Article  PubMed  CAS  Google Scholar 

  • Han MJ, Park SJ, Park TJ, Lee SY (2004) Roles and applications of small heat shock proteins in the production of recombinant proteins in Escherichia coli. Biotechnol Bioeng 88:426–436

    Article  PubMed  CAS  Google Scholar 

  • Han MJ, Lee JW, Lee SY (2005) Enhanced proteome profiling by inhibiting proteolysis with small heat shock proteins. J Proteome Res 4:2429–2434

    Article  PubMed  CAS  Google Scholar 

  • Harndahl U, Hall RB, Osteryoung KW, Vierling E, Bornman JF, Sundby C (1999) The chloroplast small heat shock protein undergoes oxidation-dependent conformational changes and may protect plants from oxidative stress. Cell Stress Chaperones 4:129–138

    Article  PubMed  CAS  Google Scholar 

  • Harndahl U, Kokke BP, Gustavsson N, Linse S, Berggren K, Tjerneld F, Boelens WC, Sundby C (2001) The chaperone-like activity of a small heat shock protein is lost after sulfoxidation of conserved methionines in a surface-exposed amphipathic alpha-helix. Biochim Biophys Acta 1545:227–237

    PubMed  CAS  Google Scholar 

  • Haslbeck M, Walke S, Stromer T, Ehrnsperger M, White HE, Chen S, Saibil HR, Buchner J (1999) Hsp26: a temperature-regulated chaperone. EMBO J 18:6744–6751

    Article  PubMed  CAS  Google Scholar 

  • Haslbeck M, Franzmann T, Weinfurtner D, Buchner J (2005) Some like it hot: the structure and function of small heat-shock proteins. Nat Struct Mol Biol 12:842–846

    Article  PubMed  CAS  Google Scholar 

  • Horwitz J (1992) Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci USA 89:10449–10453

    Article  PubMed  CAS  Google Scholar 

  • Horwitz J (2003) Alpha-crystallin. Exp Eye Res 76:145–153

    Article  PubMed  CAS  Google Scholar 

  • Hultschig C, Frank R (2004) Multiplexed sorting of libraries on libraries: a novel method for empirical protein design by affinity-driven phage enrichment on synthetic peptide arrays. Mol Divers 8:231–245

    Article  PubMed  CAS  Google Scholar 

  • Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268:1517–1520

    PubMed  CAS  Google Scholar 

  • Jiao W, Li P, Zhang J, Zhang H, Chang Z (2005) Small heat-shock proteins function in the insoluble protein complex. Biochem Biophys Res Commun 335:227–231

    Article  PubMed  CAS  Google Scholar 

  • Kappe G, Franck E, Verschuure P, Boelens WC, Leunissen JA, de Jong WW (2003) The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1–10. Cell Stress Chaperones 8:53–61

    Article  PubMed  CAS  Google Scholar 

  • Kim KK, Kim R, Kim SH (1998) Crystal structure of a small heat-shock protein. Nature 394:595–599

    Article  PubMed  CAS  Google Scholar 

  • Koch J, Mahler M, Bluthner M, Dubel S (2002) Analysis of protein interactions with peptides synthesized on membranes. In: Golemis E (ed) Protein–protein interactions. CSHL Press, New York, pp 569–583

  • Lee GJ, Roseman AM, Saibil HR, Vierling E (1997) A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J 16:659–671

    Article  PubMed  CAS  Google Scholar 

  • Lethanh H, Neubauer P, Hoffmann F (2005) The small heat-shock proteins IbpA and IbpB reduce the stress load of recombinant Escherichia coli and delay degradation of inclusion bodies. Microb Cell Fact 4:6

    Article  PubMed  CAS  Google Scholar 

  • Matuszewska M, Kuczynska Wisnik D, Laskowska E, Liberek K (2005) The small heat shock protein IbpA of Escherichia coli cooperates with IbpB in stabilization of thermally aggregated proteins in a disaggregation competent state. J Biol Chem 280:12292–12298

    Article  PubMed  CAS  Google Scholar 

  • Nordberg Karlsson E, Crennell SJ, Higgins C, Nawaz S, Yeoh L, Hough DW, Danson MJ (2003) Citrate synthase from Thermus aquaticus: a thermostable bacterial enzyme with a five-membered inter-subunit ionic network. Extremophiles 7:9–16

    PubMed  CAS  Google Scholar 

  • Remington S, Wiegand G, Huber R (1982) Crystallographic refinement and atomic models of two different forms of citrate synthase at 2.7 and 1.7 A resolution. J Mol Biol 158:111–152

    Article  PubMed  CAS  Google Scholar 

  • Russell RJ, Hough DW, Danson MJ, Taylor GL (1994) The crystal tructure of citrate synthase from the thermophilic archaeon, Thermoplasma acidophilum. Structure 2:1157–1167

    Article  PubMed  CAS  Google Scholar 

  • Russell RJ, Ferguson JM, Hough DW, Danson MJ, Taylor GL (1997) The crystal structure of citrate synthase from the hyperthermophilic archaeon Pyrococcus furiosus at 1.9 A resolution. Biochemistry 36:9983–9994

    Article  PubMed  CAS  Google Scholar 

  • Sharma KK, Kumar RS, Kumar GS, Quinn PT (2000) Synthesis and characterization of a peptide identified as a functional element in alphaA-crystallin. J Biol Chem 275:3767–3771

    Article  PubMed  CAS  Google Scholar 

  • Stamler R, Kappe G, Boelens W, Slingsby C (2005) Wrap** the alpha-crystallin domain fold in a chaperone assembly. J Mol Biol 353:68–79

    Article  PubMed  CAS  Google Scholar 

  • Van Montfort R, Slingsby C, Vierling E (2001) Structure and function of the small heat shock protein/alpha-crystallin family of molecular chaperones. Adv Protein Chem 59:105–156

    PubMed  Google Scholar 

  • van Montfort RL, Basha E, Friedrich KL, Slingsby C, Vierling E (2001) Crystal structure and assembly of a eukaryotic small heat shock protein. Nat Struct Biol 8:1025–1030

    Article  PubMed  CAS  Google Scholar 

  • Waters ER, Vierling E (1999) The diversification of plant cytosolic small heat shock proteins preceded the divergence of mosses. Mol Biol Evol 16:127–139

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the Carl Tryggers Research Foundation and Magnus Bergvalls Stiftelse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Sundby Emanuelsson.

Additional information

Communicated by G. Antranikian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Åhrman, E., Gustavsson, N., Hultschig, C. et al. Small heat shock proteins prevent aggregation of citrate synthase and bind to the N-terminal region which is absent in thermostable forms of citrate synthase. Extremophiles 11, 659–666 (2007). https://doi.org/10.1007/s00792-007-0080-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-007-0080-3

Keywords

Navigation