Log in

In vitro comparison of mechanical properties and degree of cure of bulk fill composites

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The aim of our study was to measure and compare degree of conversion (DC) as well as micro- (indentation modulus, E; Vickers hardness, HV) and macromechanical properties (flexural strength, σ; flexural modulus, E flexural) of two recently launched bulk fill resin-based composites (RBCs): Surefil® SDR™ flow (SF) and Venus® bulk fill (VB).

Materials and methods

DC (n = 6) was investigated by Fourier transform infrared spectroscopy (FTIR) in clinical relevant filling depths (0.1, 2, and 4 mm; 6 mm bulk, 6 mm incremental) and irradiation times (10, 20, 40 s). Micro- (n = 6) and macromechanical (n = 20) properties were measured by an automatic microhardness indenter and a three-point bending test device after storing the specimens in distilled water for 24 h at 37°C. Furthermore, on the 6-mm bulk samples, the depth of cure was determined. A field emission scanning electron microscope was used to assess filler size. Results were evaluated using one-way analysis of variance, Tukey’s honest significance test post hoc test, a multivariate analysis (α = 0.05) and an independent t test. Weibull analysis was used to assess σ.

Results

VB showed, in all depth, significant higher DC (VB, 62.4–67.4 %; SF, 57.1–61.9 %), but significant lower macro- (VB, E flexural = 3.6 GPa; σ = 122.7 MPa; SF, E flexural = 5.0 GPa; σ = 131.8 MPa) and micromechanical properties (VB, E = 7.3–8.8 GPa, HV = 40.7–46.5 N/mm²; SF, E = 10.6–12.2 GPa, HV = 55.1–61.1 N/mm²). Both RBCs showed high reliability (VB, m = 21.6; SF, m = 26.7) and a depth of cure of at least 6 mm at all polymerization times. The factor “RBC” showed the strongest influence on the measured properties (η 2 = 0.35–0.80) followed by “measuring depth” (η 2 = 0.10–0.46) and “polymerization time” (η 2 = 0.03–0.12).

Conclusions

Significant differences between both RBCs were found for DC, E, σ, and E flexural at all irradiation times and measuring depths.

Clinical relevance

Curing the RBCs in 4-mm bulks for 20 s can be recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ferracane JL (2011) Resin composite—state of the art. Dent Mater 27:29–38. doi:10.1016/j.dental.2010.10.020

    Article  PubMed  Google Scholar 

  2. Venus® bulk fill Technical Information (2011) http://www.heraeus-venus.com/en/usa/products_10/venusbulkfill/technicalinformation_2.html

  3. Chen HY, Manhart J, Hickel R, Kunzelmann KH (2001) Polymerization contraction stress in light-cured packable composite resins. Dent Mater 17:253–259

    Article  PubMed  Google Scholar 

  4. Davidson CL, de Gee AJ, Feilzer A (1984) The competition between the composite–dentin bond strength and the polymerization contraction stress. J Dent Res 63:1396–1399

    Article  PubMed  Google Scholar 

  5. Leinfelder KF (1995) Posterior composite resins: the materials and their clinical performance. J Am Dent Assoc 126(5):663–672

    PubMed  Google Scholar 

  6. Carvalho RM, Pereira JC, Yoshiyama M, Pashley DH (1996) A review of polymerization contraction: the influence of stress development versus stress relief. Oper Dent 21:17–24

    PubMed  Google Scholar 

  7. McCullock AJ, Smith BG (1986) In vitro studies of cusp reinforcement with adhesive restorative material. Br Dent J 161:450–452

    Article  PubMed  Google Scholar 

  8. Alomari QD, Reinhardt JW, Boyer DB (2001) Effect of liners on cusp deflection and gap formation in composite restorations. Oper Dent 26:406–411

    PubMed  Google Scholar 

  9. Surefil® SDR™ flow Product Brochure (2010) Dentsply international. http://www.surefilsdrflow.com/sites/default/files/SureFil_Brochure.pdf

  10. Burgess J, Cakir D (2010) Comparative properties of low-shrinkage composite resins. Compend Contin Educ Dent 31(2):10–15

    PubMed  Google Scholar 

  11. Ilie N, Hickel R (2011) Investigations on a methacrylate-based flowable composite based on the SDR technology. Dent Mater 27:348–355. doi:10.1016/j.dental.2010.11.014

    Article  PubMed  Google Scholar 

  12. de Biasi M, Calvi RM, Sossi D, Maglione M, Angerame D (2010) Microhardness of a new flowable composite liner for posterior restorations. Dent Mater 26:e25–e25. doi:DOI:10.1016/j.dental.2010.08.061

    Article  Google Scholar 

  13. Ilie N, Hickel R (2010) Shrinkage behaviour of novel flowable composites based on the SDR(TM) technology. Dent Mater 26:e130–e130. doi:DOI:10.1016/j.dental.2009.11.089

    Article  Google Scholar 

  14. Giovannetti A, Goracci C, Polimeni A, Pacifici E, Ferrari M (2010) Post retention using a new resin-based composite with low curing stress. Dent Mater 26:e72–e72. doi:DOI:10.1016/j.dental.2010.08.162

    Article  Google Scholar 

  15. Leprince JG, Leveque P, Nysten B, Gallez B, Devaux J, Leloup G New insight into the “depth of cure” of dimethacrylate-based dental composites. Dent Mater. doi:10.1016/j.dental.2011.12.004

  16. Moore BK, Platt JA, Borges G, Chu TM, Katsilieri I (2008) Depth of cure of dental resin composites: ISO 4049 depth and microhardness of types of materials and shades. Oper Dent 33:408–412

    Article  PubMed  Google Scholar 

  17. Hansen EK, Asmussen E (1997) Visible-light curing units: correlation between depth of cure and distance between exit window and resin surface. Acta Odontol Scand 55:162–166

    Article  PubMed  Google Scholar 

  18. Pires JA, Cvitko E, Denehy GE, Swift EJ Jr (1993) Effects of curing tip distance on light intensity and composite resin microhardness. Quintessence Int 24:517–521

    PubMed  Google Scholar 

  19. Price RB, Derand T, Sedarous M, Andreou P, Loney RW (2000) Effect of distance on the power density from two light guides. J Esthet Dent 12:320–327

    Article  PubMed  Google Scholar 

  20. Ernst CP, Meyer GR, Muller J, Stender E, Ahlers MO, Willershausern B (2004) Depth of cure of LED vs QTH light-curing devices at a distance of 7 mm. J Adhes Dent 6:141–150

    PubMed  Google Scholar 

  21. Surefil®SDR™ flow Posterior Bulk Fill Flowable Base—Directions for use (2009) DENTSPLY Caulk. http://www.caulk.com/assets/pdfs/products/Surefil%20SDR%20Flow%203-Language%20DFU.pdf

  22. Venus® bulk fill—Instructions for use (2010) Heraeus Kulzer. http://venusbulkfill.com/media/webmedia_local/media/pdfs/VenusBulkFillDFU_English.pdf

  23. Sideridou I, Tserki V, Papanastasiou G (2002) Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials 23:1819–1829

    Article  PubMed  Google Scholar 

  24. Vertise Flow Technical Bulletin (2011) http://eu.vertiseflow.com/files/bullettin_vertise_e.pdf

  25. Vertise Flow-Product details—FAQ (2010) http://eu.vertiseflow.com/en/product_details.html?page=faq

  26. Buonocore MG (1955) A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. J Dent Res 34:849–853

    Article  PubMed  Google Scholar 

  27. Glenn JF (1979) Comments on Dr. Bowen’s presentation. J Dent Res 58:1504–1506. doi:10.1177/00220345790580051401

    Article  PubMed  Google Scholar 

  28. Ling L, Xu X, Choi GY, Billodeaux D, Guo G, Diwan RM (2009) Novel F-releasing composite with improved mechanical properties. J Dent Res 88:83–88. doi:10.1177/0022034508328254

    Article  PubMed  Google Scholar 

  29. Asmussen E (1983) Factors affecting the color stability of restorative resins. Acta Odontol Scand 41:11–18

    Article  PubMed  Google Scholar 

  30. SDR™ Scientific Compendium (2011) http://www.dentsply.eu/bausteine.net/file/showfile.aspx?downdaid=8854&sp=E&domid=1042&fd=2

  31. Amirouche-Korichi A, Mouzali M, Watts DC (2009) Effects of monomer ratios and highly radiopaque fillers on degree of conversion and shrinkage strain of dental resin composites. Dent Mater 25:1411–1418. doi:10.1016/j.dental.2009.06.009

    Article  PubMed  Google Scholar 

  32. Ferracane JL, Greener EH (1986) The effect of resin formulation on the degree of conversion and mechanical properties of dental restorative resins. J Biomed Mater Res 20:121–131. doi:10.1002/jbm.820200111

    Article  PubMed  Google Scholar 

  33. Scougall-Vilchis RJ, Hotta Y, Hotta M, Idono T, Yamamoto K (2009) Examination of composite resins with electron microscopy, microhardness tester and energy dispersive X-ray microanalyzer. Dent Mater J 28:102–112

    Article  PubMed  Google Scholar 

  34. Alvarez-Gayosso C, Barcelo-Santana F, Guerrero-Ibarra J, Saez-Espinola G, Canseco-Martinez MA (2004) Calculation of contraction rates due to shrinkage in light-cured composites. Dent Mater 20:228–235. doi:10.1016/s0109-5641(03)00097-6

    Article  PubMed  Google Scholar 

  35. Ellakwa A, Cho N, Lee IB (2007) The effect of resin matrix composition on the polymerization shrinkage and rheological properties of experimental dental composites. Dent Mater 23:1229–1235. doi:10.1016/j.dental.2006.11.004

    Article  PubMed  Google Scholar 

  36. Ge J, Trujillo M, Stansbury J (2005) Synthesis and photopolymerization of low shrinkage methacrylate monomers containing bulky substituent groups. Dent Mater 21:1163–1169. doi:10.1016/j.dental.2005.02.002

    Article  PubMed  Google Scholar 

  37. Lee JH, Um CM, Lee IB (2006) Rheological properties of resin composites according to variations in monomer and filler composition. Dent Mater 22:515–526. doi:10.1016/j.dental.2005.05.008

    Article  PubMed  Google Scholar 

  38. Kim KH, Ong JL, Okuno O (2002) The effect of filler loading and morphology on the mechanical properties of contemporary composites. J Prosthet Dent 87:642–649

    Article  PubMed  Google Scholar 

  39. Manhart J, Kunzelmann KH, Chen HY, Hickel R (2000) Mechanical properties and wear behavior of light-cured packable composite resins. Dent Mater 16:33–40

    Article  PubMed  Google Scholar 

  40. Frauscher KE, Ilie N (2011) Depth of cure and mechanical properties of nano-hybrid resin-based composites with novel and conventional matrix formulation. Clin Oral Investig. doi:10.1007/s00784-011-0647-3

  41. Li Y, Swartz ML, Phillips RW, Moore BK, Roberts TA (1985) Effect of filler content and size on properties of composites. J Dent Res 64:1396–1401

    Article  PubMed  Google Scholar 

  42. Pilo R, Cardash HS (1992) Post-irradiation polymerization of different anterior and posterior visible light-activated resin composites. Dent Mater 8:299–304

    Article  PubMed  Google Scholar 

  43. Hansen EK, Asmussen E (1993) Correlation between depth of cure and surface hardness of a light-activated resin. Scand J Dent Res 101:62–64

    PubMed  Google Scholar 

  44. Akram S, Ali Abidi SY, Ahmed S, Meo AA, Fazal-Ur-Rehman Q (2011) Effect of different irradiation times on microhardness and depth of cure of a nanocomposite resin. J Coll Phys Surg Pak 21:411–414. doi:07.2011/jcpsp.411414

    Google Scholar 

  45. Shawkat ES, Shortall AC, Addison O, Palin WM (2009) Oxygen inhibition and incremental layer bond strengths of resin composites. Dent Mater 25:1338–1346. doi:10.1016/j.dental.2009.06.003

    Article  PubMed  Google Scholar 

  46. Versluis A, Tantbirojn D, Douglas WH (1998) Do dental composites always shrink toward the light? J Dent Res 77:1435–1445

    Article  PubMed  Google Scholar 

  47. Kakaboura A, Rahiotis C, Watts D, Silikas N, Eliades G (2007) 3D-marginal adaptation versus setting shrinkage in light-cured microhybrid resin composites. Dent Mater 23:272–278. doi:10.1016/j.dental.2006.01.020

    Article  PubMed  Google Scholar 

  48. Baroudi K, Silikas N, Watts DC (2008) Edge-strength of flowable resin composites. J Dent 36:63–68. doi:10.1016/j.jdent.2007.10.006

    Article  PubMed  Google Scholar 

  49. Tjandrawinata R, Irie M, Suzuki K (2005) Flexural properties of eight flowable light-cured restorative materials, in immediate vs 24-hour water storage. Oper Dent 30:239–249

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicoleta Ilie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czasch, P., Ilie, N. In vitro comparison of mechanical properties and degree of cure of bulk fill composites. Clin Oral Invest 17, 227–235 (2013). https://doi.org/10.1007/s00784-012-0702-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-012-0702-8

Keywords

Navigation