Log in

Bacteria can promote calcium oxalate crystal growth and aggregation

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 20 March 2013

Abstract

Our previous report showed that uropathogenic bacteria, e.g., Escherichia coli, are commonly found inside the nidus of calcium oxalate (CaOx) kidney stones and may play pivotal roles in stone genesis. The present study aimed to prove this new hypothesis by direct examining CaOx lithogenic activities of both Gram-negative and Gram-positive bacteria. CaOx was crystallized in the absence (blank control) or presence of 105 CFU/ml E. coli, Klebsiella pneumoniae, Staphylococcus aureus, or Streptococcus pneumoniae. Fragmented red blood cell membranes and intact red blood cells were used as positive and negative controls, respectively. The crystal area and the number of aggregates were measured to initially screen for effects of bacteria on CaOx crystal growth and aggregation. The data revealed that all the bacteria tested dramatically increased the crystal area and number of crystal aggregates. Validation assays (spectrophotometric oxalate-depletion assay and an aggregation–sedimentation study) confirmed their promoting effects on both growth (20.17 ± 3.42, 17.55 ± 2.27, 16.37 ± 1.38, and 21.87 ± 0.85 % increase, respectively) and aggregation (57.45 ± 2.08, 51.06 ± 5.51, 55.32 ± 2.08, and 46.81 ± 3.61 % increase, respectively) of CaOx crystals. Also, these bacteria significantly enlarged CaOx aggregates, with the diameter greater than the luminal size of distal tubules, implying that tubular occlusion might occur. Moreover, these bacterial effects were dose-dependent and specific to intact viable bacteria, not intact dead or fragmented bacteria. In summary, intact viable E. coli, K. pneumoniae, S. aureus, and S. pneumoniae had significant promoting effects on CaOx crystal growth and aggregation. This functional evidence supported the hypothesis that various types of bacteria can induce or aggravate metabolic stone disease, particularly the CaOx type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bichler KH, Eipper E, Naber K, Braun V, Zimmermann R, Lahme S (2002) Int J Antimicrob Agents 19:488–498

    Article  PubMed  CAS  Google Scholar 

  2. Bichler KH, Eipper E, Naber K (2003) Urologe A 42:47–55

    PubMed  Google Scholar 

  3. Miano R, Germani S, Vespasiani G (2007) Urol Int 79(Suppl 1):32–36

    Article  PubMed  Google Scholar 

  4. Coe FL, Evan A, Worcester E (2005) J Clin Invest 115:2598–2608

    Article  PubMed  CAS  Google Scholar 

  5. Pak CY (1998) Lancet 351:1797–1801

    Article  PubMed  CAS  Google Scholar 

  6. Nakagawa Y, Abram V, Parks JH, Lau HS, Kawooya JK, Coe FL (1985) J Clin Invest 76:1455–1462

    Article  PubMed  CAS  Google Scholar 

  7. Atmani F, Khan SR (1999) J Am Soc Nephrol 10(Suppl 14):S385–S388

    PubMed  CAS  Google Scholar 

  8. Chutipongtanate S, Nakagawa Y, Sritippayawan S, Pittayamateekul J, Parichatikanond P, Westley BR, May FE, Malasit P, Thongboonkerd V (2005) J Clin Invest 115:3613–3622

    Article  PubMed  CAS  Google Scholar 

  9. Khan SR, Glenton PA, Backov R, Talham DR (2002) Kidney Int 62:2062–2072

    Article  PubMed  CAS  Google Scholar 

  10. Chutipongtanate S, Thongboonkerd V (2010) J Urol 184:743–749

    Article  PubMed  CAS  Google Scholar 

  11. Chutipongtanate S, Thongboonkerd V (2010) Chem Biol Interact 188:421–426

    Article  PubMed  CAS  Google Scholar 

  12. Yoshida O, Kiriyama T, Okada K, Okada Y, Watanabe H, Mishina T, Uchida M, Watanabe K, Tomoyoshi T, Takayama H (1984) Hinyokika Kiyo 30:191–198

    PubMed  CAS  Google Scholar 

  13. Takeuchi H, Okada Y, Yoshida O, Arai Y, Tomoyoshi T (1989) Hinyokika Kiyo 35:749–754

    PubMed  CAS  Google Scholar 

  14. Sohshang HL, Singh MA, Singh NG, Singh SR (2000) J Commun Dis 32:216–221

    PubMed  CAS  Google Scholar 

  15. Tavichakorntrakool R, Prasongwattana V, Sungkeeree S, Saisud P, Sribenjalux P, Pimratana C, Bovornpadungkitti S, Sriboonlue P, Thongboonkerd V (2012) Nephrol Dial Transplant 27:4125–4130

    Article  PubMed  Google Scholar 

  16. Borghi L, Nouvenne A, Meschi T (2012) Nephrol Dial Transplant 27:3982–3984

    Article  PubMed  Google Scholar 

  17. Thongboonkerd V, Chutipongtanate S, Semangoen T, Malasit P (2008) J Urol 179:1615–1619

    Article  PubMed  CAS  Google Scholar 

  18. Nichols G, Byard S, Bloxham MJ, Botterill J, Dawson NJ, Dennis A, Diart V, North NC, Sherwood JD (2002) J Pharm Sci 91:2103–2109

    Article  PubMed  CAS  Google Scholar 

  19. Hirano S, Ohkawa M, Nakajima T, Orito M, Sugata T, Hisazumi H (1985) Hinyokika Kiyo 31:1387–1391

    PubMed  CAS  Google Scholar 

  20. Freeman W, Bracegirdle B (1976) An advanced atlas of histology. Heinemann, London

    Google Scholar 

  21. Khan SR, Kok DJ (2012) In: Stoller ML, Meng MV (eds) Urinary stone disease. Humana, Totowa

  22. Kim KM (1983) J Urol 129:855–857

    PubMed  CAS  Google Scholar 

  23. Venkatesan N, Shroff S, Jeyachandran K, Doble M (2011) Urol Res 39:29–37

    Article  PubMed  CAS  Google Scholar 

  24. Bayer ME, Sloyer JL Jr (1990) J Gen Microbiol 136:867–874

    PubMed  CAS  Google Scholar 

  25. Sheng X, Jung T, Wesson JA, Ward MD (2005) Proc Natl Acad Sci USA 102:267–272

    Article  PubMed  CAS  Google Scholar 

  26. Rabinovich YI, Esayanur M, Daosukho S, Byer KJ, El Shall HE, Khan SR (2006) J Colloid Interface Sci 300:131–140

    Article  PubMed  CAS  Google Scholar 

  27. Gross M, Cramton SE, Gotz F, Peschel A (2001) Infect Immun 69:3423–3426

    Article  PubMed  CAS  Google Scholar 

  28. Prokhorenko IR, Zubova SV, Ivanov AY, Grachev SV (2009) Int J Gen Med 2:33–38

    PubMed  CAS  Google Scholar 

  29. Okada A, Yasui T, Fujii Y, Niimi K, Hamamoto S, Hirose M, Kojima Y, Itoh Y, Tozawa K, Hayashi Y, Kohri K (2010) J Bone Miner Res 25:2701–2711

    Article  PubMed  Google Scholar 

  30. Bigelow MW, Wiessner JH, Kleinman JG, Mandel NS (1997) Am J Physiol 272:F55–F62

    PubMed  CAS  Google Scholar 

  31. Chutipongtanate S, Thongboonkerd V (2011) Biochem Biophys Res Commun 406:396–402

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Somporn Srifuengfung and Chanwit Tribuddharat for their advice on microbiological techniques, and to Sakdithep Chaiyarit and Teerada Homvises for their technical support. This study was supported by the Office of the Higher Education Commission and Mahidol University under the National Research Universities Initiative (to V.T.), the Thailand Research Fund (MRG5380018 to S.C. and RTA5380005 to V.T.), and the Faculty of Medicine Siriraj Hospital. W.C. is supported by the Royal Golden Jubilee PhD Program, and V.T. is also supported by the Chalermphrakiat grant and the Faculty of Medicine Siriraj Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Visith Thongboonkerd.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 51 kb)

Supplementary material 2 (PDF 68 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chutipongtanate, S., Sutthimethakorn, S., Chiangjong, W. et al. Bacteria can promote calcium oxalate crystal growth and aggregation. J Biol Inorg Chem 18, 299–308 (2013). https://doi.org/10.1007/s00775-012-0974-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-012-0974-0

Keywords

Navigation