Log in

Loss of enzyme activity during turnover of the Bacillus cereus β-lactamase catalysed hydrolysis of β-lactams due to loss of zinc ion

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Metallo-β-lactamases are zinc-ion-dependent and are known to exist either as mononuclear or as dinuclear enzymes. The kinetics and mechanism of hydrolysis of the native zinc Bacillus cereus metallo-β-lactamase (BcII) have been investigated under pre-steady-state conditions at different pHs and zinc-ion concentrations. Biphasic kinetics are observed for the hydrolysis of cefuroxime and benzylpenicillin with submicromolar concentrations of enzyme and zinc. The initial burst of product formation far exceeds the concentration of enzyme and the subsequent slower rate of hydrolysis is attributed to a branched kinetic pathway. The pH and metal-ion dependence of the microscopic rate constants of this branching were determined, from which it is concluded that two enzyme species with different metal-to-enzyme stoichiometries are formed during catalytic turnover. The dizinc enzyme is responsible for the fast route but during the catalytic cycle it slowly loses the less tightly bound zinc ion via the branching route to give an inactive monozinc enzyme; the latter is only catalytic following the uptake of a second zinc ion. The rate constant for product formation from the dinuclear enzyme and the branching rate constant show a sigmoidal dependence on pH indicative of important ionizing groups with pK as of 9.0 ± 0.1 and 8.2 ± 0.1, respectively. The rate constant for the regeneration of enzyme activity depends on zinc-ion concentration. This unusual behaviour is attributed to an intrinsic property of metallo hydrolytic enzymes that depend on a metal bound water both as a ligand for the second metal ion and as the nucleophile which is consumed during hydrolysis of the substrate and so has to be replaced to maintain the catalytic cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Structure 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 3
Scheme 4
Fig. 7
Scheme 5
Fig. 8

Similar content being viewed by others

References

  1. Frère JM (1995) Mol Microbiol 16:385–395

    Article  PubMed  Google Scholar 

  2. Fisher JD, Meroueh SO, Mobashery S (2005) Chem Rev 105:395–424

    Article  PubMed  CAS  Google Scholar 

  3. Galleni M, Lamotte-Brasseur J, Rossolini GM, Spencer J, Dideberg O, Frère JM (2001) Antimicrob Agents Chemother 45:660–663

    Article  PubMed  CAS  Google Scholar 

  4. Fabiane SM, Sohi MK, Wan T, Payne DJ, Bateson JH, Mitchell T, Sutton BJ (1998) Biochemistry 37:12404–12411

    Article  PubMed  CAS  Google Scholar 

  5. Orellano EG, Girardini JE, Cricco JA, Ceccarelli EA, Vila AJ (1998) Biochemistry 37:10173–10180

    Article  PubMed  CAS  Google Scholar 

  6. Paul-Soto R, Bauer R, Frère JM, Galleni M, Meyer-Klaucke W, Nolting H, Rossolini GM, de Seny D, Hernandez-Valladares M, Zeppezauer M, Adolph HW (1999) J Biol Chem 274:13242–13249

    Article  PubMed  CAS  Google Scholar 

  7. Crowder MW, Walsh TR (1999) Recent Res Dev Antimicrob Agents Chemother 3:105–132

    CAS  Google Scholar 

  8. Fitzgerald PM, Wu JK, Toney JH (1998) Biochemistry 37:6791–6800

    Article  PubMed  CAS  Google Scholar 

  9. Concha NO, Rasmussen BA, Bush K, Herzberg O (1997) Protein Sci 6:2671–2676

    Article  PubMed  CAS  Google Scholar 

  10. Toney JH, Fitzgerald PM, Grover-Sharma N, Olson SH, May WJ, Sundelof JG, Vanderwall DE, Cleary KA, Grant SK, Wu JK, Kozarich JW, Pompliano DL, Hammond GG (1998) Chem Biol 5:185–196

    Article  PubMed  CAS  Google Scholar 

  11. Carfi A, Pares S, Duee E, Galleni M, Duez C, Frère JM, Dideberg O (1995) EMBO J 1995 14:4914–4921

    CAS  Google Scholar 

  12. Carfi A, Duee E, Galleni M, Frère JM, Dideberg O (1998) Acta Crystallogr Biol Crystallogr D54:313–323

    Article  CAS  Google Scholar 

  13. Concha NO, Rasmussen BA, Bush K, Herzberg O (1996) Structure 4:823–836

    Article  PubMed  CAS  Google Scholar 

  14. Carfi A, Duee E, Paul-Soto R, Galleni M, Frère JM, Dideberg O (1998) Acta Crystallogr Biol Crystallogr D54:45–57

    Article  Google Scholar 

  15. Paul-Soto R, Zeppezauer M, Adolph HW, Galleni M, Frère JM, Carfi A, Dideberg O, Wouter J, Hemmingsen L, Bauer R (1999) Biochemistry 38:16500–16506

    Article  PubMed  CAS  Google Scholar 

  16. Concha NO, Janson CA, Rowling P, Pearson S, Cheever CA, Clarke BP, Lewis C, Galleni M, Frère JM, Payne DJ, Bateson JH, Abdel-Meguid SS (2000) Biochemistry 39:4288–4298

    Article  PubMed  CAS  Google Scholar 

  17. de Seny D, Heinz U, Wommer S, Kiefer M, Meyer-Klaucke W, Galleni M, Frère JM, Bauer R, Adolph HW (2001) J Biol Chem 276:45065–45078

    Article  PubMed  CAS  Google Scholar 

  18. Wommer S, Rival S, Heinz U, Galleni M, Frère JM, Franceschini N, Amicosante G, Rasmussen B, Bauer R, Adolph HW (2002) J Biol Chem 277:24142–24147

    Article  PubMed  CAS  Google Scholar 

  19. Crowder MW, Wang Z, Franklin SL, Zovinka EP, Benkovic SJ (1996) Biochemistry 35:12126–12132

    Article  PubMed  CAS  Google Scholar 

  20. Fast W, Wang Z, Benkovic SJ (2001) Biochemistry 40:1640–1650

    Article  PubMed  CAS  Google Scholar 

  21. Badarau A, Page MI (2006) Biochemistry 45:11012–11020

    Article  PubMed  CAS  Google Scholar 

  22. Bicknell R, Waley SG (1985) Biochemistry 24:6876–6887

    Article  PubMed  CAS  Google Scholar 

  23. Rasia RM, Vila AJ (2002) Biochemistry 41:1853–1860

    Article  PubMed  CAS  Google Scholar 

  24. Bounaga S, Laws AP, Galleni M, Page MI (1998) Biochem J 331:703–711

    PubMed  CAS  Google Scholar 

  25. Rasia RM, Vila AJ (2004) J Biol Chem 279:26046–26051

    Article  PubMed  CAS  Google Scholar 

  26. Davies AM, Rasia RM, Vila AJ, Sutton BJ, Fabiane SM (2005) Biochemistry 44:4841–4849

    Article  PubMed  CAS  Google Scholar 

  27. De Seny D, Prosperi-Meys C, Bebrone C, Rossolini GM, Page MI, Noel P, Frere JM, Galleni M (2002) Biochem J 363:687–696

    Article  PubMed  Google Scholar 

  28. Heinz U, Kiefer M, Tholey A, Adolph HW (2005) J Biol Chem 280:3197–3207

    Article  PubMed  CAS  Google Scholar 

  29. Llarrull LL, Tioni MF, Kowalski J, Bennett B, Vila AJ (2007) J Biol Chem 282:30586–30595

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the European Union research network on MBLs within the Training and Mobility of Researchers (TMR) Program, contract number HPRN-CT-2002-00264, and the University of Huddersfield.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael I. Page.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badarau, A., Page, M.I. Loss of enzyme activity during turnover of the Bacillus cereus β-lactamase catalysed hydrolysis of β-lactams due to loss of zinc ion. J Biol Inorg Chem 13, 919–928 (2008). https://doi.org/10.1007/s00775-008-0379-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0379-2

Keywords

Navigation