Log in

Characterization, using comparative proteomics, of differentially expressed proteins in the hippocampus of the mesial temporal lobe of epileptic rats following treatment with valproate

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The objective of the study was to explore the pathogenesis of mesial temporal lobe epilepsy (MTLE) and the mechanism of valproate administration in the early stage of MTLE development. We performed a global comparative analysis and function classification of differentially expressed proteins using proteomics. MTLE models of developmental rats were induced by lithium-pilocarpine. Proteins in the hippocampus were separated by 2-DE technology. PDQuest software was used to analyze 2-DE images, and MALDI-TOF-MS was used to identify the differentially expressed proteins. Western blot was used to determine the differential expression levels of synapse-related proteins synapsin-1, dynamin-1 and neurogranin in both MTLE rat and human hippocampus. A total of 48 differentially expressed proteins were identified between spontaneous and non-spontaneous MTLE rats, while 41 proteins between MTLE rats and post valproate-treatment rats were identified. All of the proteins can be categorized into several groups by biological functions: synaptic and neurotransmitter release, cytoskeletal structure and dynamics, cell junctions, energy metabolism and mitochondrial function, molecular chaperones, signal regulation and others. Western blot results were similar to the changes noted in 2-DE. The differentially expressed proteins, especially the proteins related to synaptic and neurotransmitter release function, such as synapsin-1, dynamin-1 and neurogranin, are probably involved in the mechanism of MTLE and the pharmacological effect of valproate. These findings may provide important clues to elucidate the mechanism of chronic MTLE and to identify an optimum medication intervention time and new biomarkers for the development of pharmacological therapies targeted at epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AEDs:

Antiepileptic drugs

Cx50:

Gap junction channel protein connexin 50

2-DE:

Two-dimensional polyacrylamide gel electrophoresis

F-actin:

Actin filaments

HSPs:

Heat shock proteins

IML:

Inner molecular layer

MALDI-TOF-MS:

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

MAPKK1:

Dual specificity mitogen-activated protein kinase kinase 1

MTLE:

Mesial temporal lobe epilepsy

SE:

Status epilepticus

SIR2-like:

NAD-dependent deacetylase sirtuin-2

TCP-1:

T-complex protein 1

VPA:

Valproate

References

  • Babb TL, Kupfer WR, Pretorius JK, Crandall PH, Levesque MF (1991) Synaptic reorganization by mossy fibers in human epileptic fascia dentata. Neuroscience 42(2):351–363

    Article  CAS  PubMed  Google Scholar 

  • Bakolitsa C, Cohen DM, Bankston LA, Bobkov AA, Cadwell GW, Jennings L, Critchley DR, Craig SW, Liddington RC (2004) Structural basis for vinculin activation at sites of cell adhesion. Nature 430(6999):513–515

    Article  Google Scholar 

  • Cavazos JE, Cross DJ (2006) The role of synaptic reorganization in mesial temporal lobe epilepsy. Epilepsy Behav 8(3):483–493

    Article  PubMed  Google Scholar 

  • Danzer SC, He X, Loepke AW, McNamara JO (2010) Structural plasticity of dentate granule cell mossy fibers during the development of limbic epilepsy. Hippocampus 20(1):113–124

    PubMed  Google Scholar 

  • Demand J, Luders J, Hoehfeld J (1998) The carboxy-terminal domain of Hsc70 provides binding sites for a distinct set of chaperone cofactors. Mol Cell Biol 18(4):2023–2028

    CAS  PubMed  Google Scholar 

  • Dryden SC, Nahhas FA, Nowak JE, Goustin AS, Tainsky MA (2003) Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol 23(9):3173–3185

    Article  CAS  PubMed  Google Scholar 

  • Engel J Jr (1996) Introduction to temporal lobe epilepsy. J Epilepsy Res 26(1):141–150

    Article  Google Scholar 

  • Evergren E, Tomilin N, Vasylieva E, Sergeeva V, Bloom O, Gad H, Capani F, Shupliakov O (2004) A pre-embedding immunogold approach for detection of synaptic endocytic proteins in situ. J Neurosci Methods 135(1–2):169–174

    Article  CAS  PubMed  Google Scholar 

  • Fioravante D, Liu RY, Netek AK, Cleary LJ, Byrne JH (2007) Synapsin regulates basal synaptic strength, synaptic depression, and serotonin-induced facilitation of sensorimotor synapses in Aplysia. J Neurophysiol 98(6):3568–3580

    Article  CAS  PubMed  Google Scholar 

  • Franck JE, Pokorny J, Kunkel DD, Schwartzkroin PA (1995) Physiologic and morphologic characteristics of granule cell circuitry in human epileptic hippocampus. Epilepsia 36(6):543–558

    Article  CAS  PubMed  Google Scholar 

  • Fukata Y, Adesnik H, Iwanaga T, Bredt DS, Nicoll RA, Fukata M (2006) Epilepsy-related ligand/receptor complex LGI1 and ADAM22 regulate synaptic transmission. Science 313(5794):1792–1795

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Tatavarty V, Korza G, Levin MK, Carson JH (2008) Multiplexed dendritic targeting of alpha calcium calmodulin-dependent protein kinase II, neurogranin, and activity-regulated cytoskeleton-associated protein RNAs by the A2 pathway. Mol Biol Cell 19(5):2311–2327

    Article  CAS  PubMed  Google Scholar 

  • Gluck MR, Jayatilleke E, Shaw S, Rowan AJ, Haroutunian V (2000) CNS oxidative stress associated with the kainic acid rodent model of experimental epilepsy. Epilepsy Res 39(1):63–71

    Article  CAS  PubMed  Google Scholar 

  • Graves TD (2006) Ion channels and epilepsy. QJM 99(4):201–217

    Article  CAS  PubMed  Google Scholar 

  • Greene ND, Bamidele A, Choy M, de Castro SC, Wait R, Leung KY, Begum S, Gadian DG, Scott RC, Lythgoe MF (2007) Proteome changes associated with hippocampal MRI abnormalities in the lithium pilocarpine-induced model of convulsive status epilepticus. Proteomics 7(8):1336–1344

    Article  CAS  PubMed  Google Scholar 

  • Hamani C, Paulo I, Mello LE (2005) Neo-Timm staining in the thalamus of chronically epileptic rats. Braz J Med Biol Res 38(11):1677–1682

    Article  CAS  PubMed  Google Scholar 

  • Hilfiker S, Benfenati F, Doussau F, Nairn AC, Czernik AJ, Augustine GJ, Greengard P (2005) Structural domains involved in the regulation of transmitter release by synapsins. J Neurosci 25(10):2658–2669

    Article  CAS  PubMed  Google Scholar 

  • Hoeffer CA, Sanyal S, Ramaswami M (2003) Acute induction of conserved synaptic signaling pathways in Drosophila melanogaster. J Neurosci 23(15):6362–6372

    CAS  PubMed  Google Scholar 

  • Horne MM, Guadagno TM (2003) A requirement for MAP kinase in the assembly and maintenance of the mitotic spindle. J Cell Biol 161(6):1021–1028

    Article  CAS  PubMed  Google Scholar 

  • Huang KP, Huang FL, Ger JT, Li J, Reymann KG, Balschun D (2004) Neurogranin/RC3 enhances long-term potentiation and learning by promoting calcium-mediated signaling. J Neurosci 24(47):10660–10669

    Article  CAS  PubMed  Google Scholar 

  • Jabs R, Seifert G, Steinh user C (2008) Astrocytic function and its alteration in the epileptic brain. Epilepsia 49(2):3–12

    Article  CAS  PubMed  Google Scholar 

  • Johannessen CU, Petersen D, Fonnum F, Hassel B (2001) The acute effect of valproate on cerebral energy metabolism in mice. Epilepsy Res 47(3):247–256

    Article  CAS  PubMed  Google Scholar 

  • Kapur J (2008) Is epilepsy a disease of synaptic transmission? Epilepsy Curr 8(5):139–141

    Article  PubMed  Google Scholar 

  • Kubota Y, Putkey JA, Shouval HZ, Waxham MN (2008) IQ-motif proteins influence intracellular free Ca2+ in hippocampal neurons through their interactions with calmodulin. J Neurophysiol 99(1):264–276

    Article  CAS  PubMed  Google Scholar 

  • Kwan P, Brodie MJ (2000) Epilepsy after the first drug fails: substitution or add-on? Seizure 9(7):464–468

    Article  CAS  PubMed  Google Scholar 

  • Landmark CJ (2007) Targets for antiepileptic drugs in the synapse. Med Sci Monit 13(1):RA1–RA7

    CAS  PubMed  Google Scholar 

  • Lee S, Carson K, Rice-Ficht A, Good T (2005) Hsp20, a novel alpha-crystallin, prevents Abeta fibril formation and toxicity. Protein Sci 14(3):593–601

    Article  CAS  PubMed  Google Scholar 

  • Leite JP, Cavalheiro EA (1995) Effects of conventional antiepileptic drugs in a model of spontaneous recurrent seizures in rats. Epilepsy Res 20(2):93–104

    Article  CAS  PubMed  Google Scholar 

  • Little E, Tocco G, Baudry M, Lee AS, Schreiber SS (1996) Induction of glucose-regulated protein (glucose-regulated protein 78/BiP and glucose-regulated protein 94) and heat shock protein 70 transcripts in the immature rat brain following status epilepticus. Neuroscience 75(1):209–219

    Article  CAS  PubMed  Google Scholar 

  • Liu XY, Yang JL, Chen LJ, Zhang Y, Yang ML, Wu YY, Li FQ, Tang MH, Liang SF, Wei YQ (2008) Comparative proteomics and correlated signaling network of rat hippocampus in the pilocarpine model of temporal lobe epilepsy. Proteomics 8(3):582–603

    Article  CAS  PubMed  Google Scholar 

  • Lopantsev V, Both M, Draguhn A (2009) Rapid plasticity at inhibitory and excitatory synapses in the hippocampus induced by ictal epileptiform discharges. Eur J Neurosci 29(6):1153–1164

    Article  PubMed  Google Scholar 

  • Mathern GW, Babb TL, Micevych PE, Blanco CE, Pretorius JK (1997) Granule cell mRNA levels for BDNF, NGF, and NT-3 correlate with neuron losses or supragranular mossy fiber sprouting in the chronically damaged and epileptic human hippocampus. Mol Chem Neuropathol 30(1–2):53–76

    Article  CAS  PubMed  Google Scholar 

  • McPherson PS, Czernik AJ, Chilcote TJ, Onofri F, Benfenati F, Greengard P, Schlessinger J, De Camilli P (1994) Interaction of Grb2 via its Src homology 3 domains with synaptic proteins including synapsin I. Proc Natl Acad Sci U S A 91(14):6486–6490

    Article  CAS  PubMed  Google Scholar 

  • Moshe SL (1993) Seizures in the develo** brain [J]. Neurology 43(11 Suppl 5):S3–S7

    CAS  PubMed  Google Scholar 

  • Muramatsu R, Ikegaya Y, Matsuki N et al (2008) Early-life status epilepticus induces ectopic granule cells in adult mice dentate gyrus [J]. Exp Neurol 211(2):503–510

    Article  CAS  PubMed  Google Scholar 

  • North BJ, Marshall BL, Borra MT, Denu JM, Verdin E (2003) The human Sir2 ortholog, SIRT2, is an NADþ-dependent tubulin deacetylase. Mol Cell 11(2):437–444

    Article  CAS  PubMed  Google Scholar 

  • Oku T, Kaneko Y, Murofushi K, Seyama Y, Toyoshima S, Tsuji T (2008) Phorbol ester-dependent phosphorylation regulates the association of p57/coronin-1 with the actin cytoskeleton. J Biol Chem 283(43):28918–28925

    Article  CAS  PubMed  Google Scholar 

  • Ouyang Y, Yang XF, Hu XY, Erbayat-Altay E, Zeng LH, Lee JM, Wong M (2007) Hippocampal seizures cause depolymerization of filamentous actin in neurons independent of acute morphological changes. Brain Res 1143:238–246

    Article  CAS  PubMed  Google Scholar 

  • Sarac S, Afzal S, Broholm H, Madsen FF, Ploug T, Laursen H (2009) EAAT-1 and EAAT-2 in temporal lobe and hippocampus in intractable temporal lobe epilepsy. APMIS 117(4):291–301

    Article  CAS  PubMed  Google Scholar 

  • Schuller E, Gulesserian T, Seidl R, Cairns N, Lubec G (2001) Brain t-complex polypeptide 1 (TCP-1) related to its natural substrate beta1 tubulin is decreased in Alzheimer’s disease. Life Sci 69(3):263–270

    Article  CAS  PubMed  Google Scholar 

  • Schwartzkroin PA (1986) Hippocampal slices in experimental and human epilepsy. Adv Neurol 44:991–1010

    CAS  PubMed  Google Scholar 

  • Shim KS, Lubec G (2002) Drebrin, a dendritic spine protein, is manifold decreased in brains of patients with Alzheimer’s disease and Down syndrome. Neurosci Lett 324(3):209–212

    Article  CAS  PubMed  Google Scholar 

  • Terada S, Tsujimoto T, Takei Y, Takahashi T, Hirokawa N (1999) Impairment of inhibitory synaptic transmission in mice lacking synapsin I. J Cell Biol 145(5):1039–1048

    Article  CAS  PubMed  Google Scholar 

  • Timofeev I, Bazhenov M, Avramescu S, Nita DA (2009) Posttraumatic epilepsy: the roles of synaptic plasticity. Neuroscientist (Epub ahead of print)

  • Ueda S, Masutani H, Nakamura H, Tanaka T, Ueno M, Yodoi J (2002) Redox control of cell death. Antioxid Redox Signal 4(3):405–414

    Article  CAS  PubMed  Google Scholar 

  • Weitzdoerfer R, Fountoulakis M, Lubec G (2002) Reduction of actin-related protein complex in fetal Down syndrome brain. Biochem Biophys Res Commun 293(2):836–841

    Article  CAS  PubMed  Google Scholar 

  • Williams PA, Dou P, Dudek FE (2004) Epilepsy and synaptic reorganization in a perinatal rat model of hypoxia–ischemia. Epilepsia 45(10):1210–1218

    Article  PubMed  Google Scholar 

  • Witke W, Podtelejnikov AV, Di Nardo A, Sutherland JD, Gurniak CB, Dotti C, Mann M (1998) In mouse brain profilin I and profilin II associate with regulators of the endocytic pathway and actin assembly. EMBO J 17(4):967–976

    Article  CAS  PubMed  Google Scholar 

  • Wong M (2008) Stabilizing dendritic structure as a novel therapeutic approach for epilepsy. Expert Rev Neurother 8(6):907–915

    Article  CAS  PubMed  Google Scholar 

  • Wu LW, Peng J, Wei CP, Yin F (2009) Preliminary explorations of differentially expressed proteins in hippocampus of MTLE rats following treatment with valproate, some findings from comparative proteomics. 13th Asian Pacific Congress of Pediatrics. Shanghai. OR710

  • ** JH, Bai F, McGaha R, Andley UP (2006) Alpha-crystallin expression affects microtubule assembly and prevents their aggregation. FASEB J 20(7):846–857

    Article  CAS  PubMed  Google Scholar 

  • Yamagata Y (2003) New aspects of neurotransmitter release and exocytosis: dynamic and differential regulation of synapsin I phosphorylation by acute neuronal excitation in vivo. J Pharmacol Sci 93:22–29

    Article  CAS  PubMed  Google Scholar 

  • Yang JW, Czech T, Felizardio M, Baumgartner C, Lubec G (2006) Aberrant expression of cytoskeleton proteins in hippocampus from patients with mesial temporal lobe epilepsy. Amino Acids 30(4):477–493

    Article  CAS  PubMed  Google Scholar 

  • Yoo BC, Vlkolinsky R, Engidawork E, Cairns N, Fountoulakis M, Lubec G (2001) Differential expression of molecular chaperones in brain of patients with Down syndrome. Electrophoresis 22(6):1233–1241

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Zhiquan Yang (Department of Neurosurgery, ** Wei, Gu Liu, Guoli Wang, Kongzhao Li & Fei Yin

Authors

Corresponding author

Correspondence to Fei Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, L., Peng, J., Wei, C. et al. Characterization, using comparative proteomics, of differentially expressed proteins in the hippocampus of the mesial temporal lobe of epileptic rats following treatment with valproate. Amino Acids 40, 221–238 (2011). https://doi.org/10.1007/s00726-010-0638-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0638-8

Keywords

Navigation