Log in

Bayesian Modeling of NMR Data: Quantifying Longitudinal Relaxation in Vivo, and in Vitro with a Tissue-Water-Relaxation Mimic (Crosslinked Bovine Serum Albumin)

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Recently, a number of magnetic resonance imaging protocols have been reported that seek to exploit the effect of dissolved oxygen (O2, paramagnetic) on the longitudinal 1H relaxation of tissue water, thus providing image contrast related to tissue oxygen content. However, tissue water relaxation is dependent on a number of mechanisms and this raises the issue of how best to model the relaxation data. This problem, the model selection problem, occurs in many branches of science and is optimally addressed by Bayesian probability theory. High signal-to-noise, densely sampled, longitudinal 1H relaxation data were acquired from rat brain in vivo and from a cross-linked bovine serum albumin (xBSA) phantom, a sample that recapitulates the relaxation characteristics of tissue water in vivo. Bayesian-based model selection was applied to a cohort of five competing relaxation models: (1) monoexponential, (2) stretched-exponential, (3) biexponential, (4) Gaussian (normal) R 1-distribution, and (5) gamma R 1-distribution. Bayesian joint analysis of multiple replicate datasets revealed that water relaxation of both the xBSA phantom and in vivo rat brain was best described by a biexponential model, while xBSA relaxation datasets truncated to remove evidence of the fast relaxation component were best modeled as a stretched exponential. In all cases, estimated model parameters were compared to the commonly used monoexponential model. Reducing the sampling density of the relaxation data and adding Gaussian-distributed noise served to simulate cases in which the data are acquisition-time or signal-to-noise restricted, respectively. As expected, reducing either the number of data points or the signal-to-noise increases the uncertainty in estimated parameters and, ultimately, reduces support for more complex relaxation models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.T. Cox, The Algebra of Probable Inference (The John Hopkins Press, Baltimore, 1961)

    MATH  Google Scholar 

  2. E.T. Jaynes, G. L. Bretthorst, Probability Theory: The Logic of Science. (Cambridge University Press, Cambridge, UK, 2003)

    Book  Google Scholar 

  3. E.T. Jaynes, in Papers on Probability, Statistics and Statistical Physics. Synthese Library, 1st edn. (Springer Netherlands, Dordrecht, The Netherlands, 1989), p. 458

    Google Scholar 

  4. H. L. M. Cheng, N. Stikov, N. R. Ghugre, G. A. Wright,  J. Magn. Reson. Imaging 36(4), 805–824 (2012)

    Article  Google Scholar 

  5. J. P. B. O’Connor, J. H. Naish, G. J. M. Parker, J. C. Waterton, Y. Watson, G. C. Jayson, G. A. Buonaccorsi, S. Cheung, D. L. Buckley, D. M. McGrath, C. M. L. West, S. E. Davidson, C. Roberts, S. J. Mills, C. L. Mitchell, L. Hope, C. Ton, A. Jackson, Int. J. Radiat. Oncol. Biol. Phys. 75(4), 1209–1215 (2009)

    Article  Google Scholar 

  6. J. P. B. O’Connor, J. H. Naish, A. Jackson, J. C. Waterton, Y. Watson, S. Cheung, D. L. Buckley, D. M. McGrath, G. A. Buonaccorsi, S. J. Mills, C. Roberts, G. C. Jayson, G. J. M. Parker, Magn. Reson. Med. 61(1), 75–83 (2009)

    Article  Google Scholar 

  7. K. Matsumoto, M. Bernardo, S. Subramanian, P. Choyke, J. B. Mitchell, M. C. Krishna, M. J. Lizak, Magn. Reson. Med. 56(2), 240–246 (2006)

    Article  Google Scholar 

  8. S. H. Koenig, R. D. Brown 3rd, R. Ugolini, Magn. Reson. Med. 29(3), 311–316 (1993)

    Article  Google Scholar 

  9. R. M. Henkelman, G. J. Stanisz, S. J. Graham, NMR Biomed. 14(2), 57–64 (2001)

    Article  Google Scholar 

  10. A. M. Prantner, G. L. Bretthorst, J. J. Neil, J. R. Garbow, J. J. H. Ackerman, Magn. Reson. Med. 60(3), 555–563 (2008)

    Article  Google Scholar 

  11. S. D. Wolff, R. S. Balaban, Magn. Reson. Med. 10(1), 135–144 (1989)

    Article  Google Scholar 

  12. M. Sass, D. Ziessow, J. Magn. Reson. 25(2), 263–276 (1977)

    ADS  Google Scholar 

  13. W. S. Moore, T. Yalcin, J. Magn. Reson. 11(1), 50–57 (1973)

    ADS  Google Scholar 

  14. R. M. Kroeker, R. M. Henkelman, J. Magn. Reson. 69(2), 218–235 (1986)

    ADS  Google Scholar 

  15. D. A. Yablonskiy, A. L. Sukstanskii, NMR Biomed. 23(7), 661–681 (2010)

    Article  Google Scholar 

  16. R. K. Gupta, J. A. Ferretti, E. D. Becker, G. H. Weiss, J. Magn. Reson. 38(3), 447–452 (1980)

    ADS  Google Scholar 

  17. G. L. Bretthorst, Concepts Magn. Reson. Part A 27a(2), 73–83 (2005)

    Article  Google Scholar 

  18. J. D. Quirk, G. L. Bretthorst, T. Q. Duong, A. Z. Snyder, C. S. Springer, J. J. H. Ackerman, J. J. Neil, Magn. Reson. Med. 50(3), 493–499 (2003)

    Article  Google Scholar 

  19. K. R. Brownstein, C. E. Tarr, J. Magn. Reson. 26(1), 17–24 (1977)

    ADS  Google Scholar 

  20. S. Davies, K.J. Packer, J. Appl. Phys. 67(6), 3163–3170 (1990)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are pleased to contribute this article in celebration of Professor James S. Hyde on the special occasion of his 85th birthday. Research supported, in part, by the McDonnell Center for Cellular and Molecular Neurobiology (JA) and National Institute of Health Grants: P50 CA094056, R01 HD086323, 5T32EB014855, and the Small Animal Cancer Imaging Shared Resource of the Alvin J. Siteman Cancer Center (P30 CA091842). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph J. H. Ackerman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meinerz, K., Beeman, S.C., Duan, C. et al. Bayesian Modeling of NMR Data: Quantifying Longitudinal Relaxation in Vivo, and in Vitro with a Tissue-Water-Relaxation Mimic (Crosslinked Bovine Serum Albumin). Appl Magn Reson 49, 3–24 (2018). https://doi.org/10.1007/s00723-017-0964-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-017-0964-z

Navigation