Log in

A multi-analytical study of the crystal structure of unusual Ti–Zr–Cr-rich Andradite from the Maronia skarn, Rhodope massif, western Thrace, Greece

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Unusual Ti–Cr–Zr-rich garnet crystals from high-temperature melilitic skarn of the Maronia area, western Thrace, Greece, were investigated by electron-microprobe analysis, powder and single-crystal X-ray diffraction, IR, Raman and Mössbauer spectroscopy. Chemical data showed that the garnets contain up to 8 wt.% TiO2, 8 wt.% Cr2O3 and 4 wt.% ZrO2, representing a solid solution of andradite (Ca3Fe3+ 2Si3O12 ≈46 mol%), uvarovite (Ca3Cr2Si3O12 ≈23 mol%), grossular (Ca3Al2Si3O12 ≈10 mol%), schorlomite (Ca3Ti2[Si,(Fe3+,Al3+)2]O12 ≈15 mol%), and kimzeyite (Ca3Zr2[Si,Al2]3O12 ≈6 mol%). The Mössbauer analysis showed that the total Fe is ferric, preferentially located at the octahedral site and to a smaller extent at the tetrahedral site. Single-crystal XRD analysis, Raman and IR spectroscopy verified substitution of Si mainly by Al3+, Fe3+ and Ti4+. Cr3+ and Zr4+ are found at the octahedral site along with Fe3+, Al3+ and Ti4+. The measured H2O content is 0.20 wt.%. The analytical data suggest that the structural formula of the Maronia garnet can be given as: (Ca2.99Mg0.03)Σ=3.02(Fe3+ 0.67Cr0.54Al0.33Ti0.29Zr0.15)Σ=1.98(Si2.42Ti0.24Fe0.18Al0.14)Σ=2.98O12OH0.11. Ti-rich garnets are not common and their crystal chemistry is still under investigation. The present work presents new evidence that will enable the elucidation of the structural chemistry of Ti- and Cr-rich garnets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agrosi G, Schingaro E, Pedrazzi G, Scandale E, Scordari F (2002) A crystal chemical insight into sector zoning of a titanian andradite (‘melanite’) crystal. Eur J Mineral 14:785–794

    Google Scholar 

  • Amthauer G (1996) Ligand field theory and inter- and intercrystalline cation distribution of transition elements in minerals and related inorganic compounds. Phys Chem Mineral 23:276–283

    Google Scholar 

  • Amthauer G, Rossman G (1998) The hydrous component in andradite garnet. Am Mineral 83:835–840

    Google Scholar 

  • Amthauer G, Annersten H, Hafner SS (1977) The Mössbauer spectrum of 57Fe in titanium-bearing andradites. Phys Chem Miner 1:399–413

    Google Scholar 

  • Armbruster T, Birrer J, Libowitzky E, Beran A (1998) Crystal chemistry of Ti-bearing andradites. Eur J Mineral 10:907–921

    Google Scholar 

  • Andrut M, Wildner M (2002) The crystal chemistry of birefringent natural uvarovites: Part I. Optical investigations and UV-VIS-IR absorption spectroscopy. Am Mineral 86:1219–1230

    Google Scholar 

  • Burns RG (1994) Mineral Mössbauer spectroscopy: correlations between chemical shift and quadrupole splitting parameters. Hyperfine Int 91:739–745

    Google Scholar 

  • Chakhmouradian AR, McCammon CA (2005) Schorlomite: a discussion of the crystal chemistry, formula and inter-species boundaries. Phys Chem Mineral 32:277–289

    Google Scholar 

  • Chakhmouradian AR, Zaitsev AN (2002) Calcite–amphibole–clinopyroxene rock from the Afrikanda complex, Cola Peninsula, Russia: mineralogy and a possible link to carbonatites. III Silicate minerals. Can Mineral 40:1347–1374

    Google Scholar 

  • Christofides G, Soldatos T, Eleftheriadis G, Koroneos A (1998) Chemical and isotopic evidence for source contamination and crustal assimilation in the Hellenic Rhodope plutonic rocks. Acta Vulcanol 10:305–318

    Google Scholar 

  • Cooper AF, Reid DL (1998) Nepheline sövites as parental magmas in carbonatite complexes: evidence from Dicker Willem, Southwest Namibia. J Petrol 39:2123–2136

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1997) Rock forming minerals Longman 919 pp

  • Del Moro A, Innocenti F, Kyriakopoulos C, Manetti P, Papadopoulos P (1988) Tertiary granitoids from Thrace (Northern Greece): Sr isotopic and petrochemical data. N Jb Mineral Abh 159:113–135

    Google Scholar 

  • Dunworth EA, Bell K (2003) The Turiy Massif, Kola Peninsula, Russia: mineral chemistry of an ultramafic–alkaline–carbonatite intrusion. Mineral Mag 67/3:423–451

    Google Scholar 

  • Fettes D, Desmons J eds (2007) Metamorphic rocks: a classification and glossary of terms. Cambridge University Press 244 p

  • Galuskina IO, Galuskin EV, Dzierżanowski P, Armbruster T, Kozaneski M (2005) A natural scandian garnet. Am Mineral 90:1688–1692

    Google Scholar 

  • Geiger CA, Winkler B, Langer K (1989) Infrared spectra of synthetic almandine–grossular and almandine–pyrope garnet solid solutions; Evidence for equivalent site behavior. Mineral Mag 53:231–237

    Google Scholar 

  • Geiger CA, Merwin L, Sebald A (1992) Structure investigations of pyrope garnet using temperature depanded FTIR and 29Si MAS NMR spectroscopy. Am Mineral 77:713–717

    Google Scholar 

  • Hemni C, Kusachi I, Hemni K (1995) Morimotoite, Ca3Fe2+Ti4+Si3O12, a new titanian garnet from Kuka, Okayama prefecture, Japan. Mineral Mag 59:115–120

    Google Scholar 

  • Howie RA, Woolley AR (1968) The role of titanium and the effect of TiO2 on the cell-size, refractive index and specific gravity in the andradite–melanite–schorlomite series. Mineral Mag 36:775–790

    Google Scholar 

  • Huggins FE, Virgo D, Huckenholz HG (1977a) Titanium containing silicate garnets I. The distribution of Al, Fe3+ and Ti4+ between octahedral and tetrahedral sites. Am Mineral 62:475–490

    Google Scholar 

  • Huggins FE, Virgo D, Huckenholz HG (1977b) Titanium containing silicate garnets II. The crystal chemistry of melanites and schorlomites. Am Mineral 62:646–665

    Google Scholar 

  • Jamtveit B, Dahlgren S, Austrheim H (1997) High-grade contact metamorphism of calcareous rocks from Oslo Rift, Southern Norway. Am Mineral 82:1241–1254

    Google Scholar 

  • Kolesov BA, Geiger CA (1998) Raman spectra of silicate garnets. Phys Chem Mineral 25:142–151

    Google Scholar 

  • Locock A, Luth RW, Cavell RG, Smith DGW, Duke MJ (1995) Spectroscopy of the cation distribution in the schorlomite species of garnet. Am Mineral 80:27–38

    Google Scholar 

  • Magganas A (2002) Constrains on the petrogenesis of Evros ophiolite extrusives, NE Greece. Lithos 65:165–182

    Google Scholar 

  • Maldener J, Hösch A, Langer K, Rauch F (2003) Hydrogen in some natural garnets studied by nuclear reaction analysis and vibrational spectroscopy. Phys Chem Mineral 30:337–344

    Google Scholar 

  • Melfos V, Vavelidis M, Christofides G, Seidel E (2002) Origin and evolution of the Tertiary Maronia porphyry copper–molybdenum deposit, Thrace, Greece. Mineral Deposita 37:648–668

    Google Scholar 

  • Milton C, Ingran BL, Blade LV (1961) Kimzeyite, a zirconian garnet from Magnet Cove, Arkansas. J Mineral Soc Am 46:553–548

    Google Scholar 

  • Mposkos E, Doryphoros K (1993) High temperature skarns in the Maronia area (NE Greece). Bull Geol Soc Greece 28:23–35

    Google Scholar 

  • Mposkos E, Krohe A (2001) Structural evolution and exhumation history of the Rhodope UHP-HP metamorphic province (Northern Greece). Bull Geol Soc Greece 34:75–82

    Google Scholar 

  • Munno R, Rossi G Tadini C (1980) Crystal chemistry of kimzeyite from Stromboli, Aeolian Islands, Italy. Am Mineral 65:188–191

    Google Scholar 

  • Novak GA, Gibbs GV (1971) The crystal chemistry of the silicate garnets. Am Mineral 56:791–825

    Google Scholar 

  • Papadopoulos P (1982) Geological map of Greece, Maronia sheet, 1:50.000. IGME, Greece

    Google Scholar 

  • Papadopoulou L (2003) Evolution and origin of the Maronia pluton, Thrace, Greece. PhD thesis, Aristotle, Univ., Thessaloniki, 336 p (in Greek with English abstract)

  • Papadopoulou L, Christofides G, Bröcker M, Koroneos A, Soldatos T, Eleftheriadis G (2001) Petrology, geochemistry and isotopic characteristics of the shoshonitic plutonic rocks from Maronia area, West Thrace, Greece. Bull Geol Soc Greece 34:967–976

    Google Scholar 

  • Papadopoulou L, Christofides G, Koroneos A, Bröcker M, Soldatos T, Eleftheriadis G (2004) Evolution and origin of the Maronia pluton, Thrace, Greece. Bull Geol Soc Greece 36:568–577

    Google Scholar 

  • Pascal ML, Fonteilles M, Verkaeren J, Piret R, Marincea Ş (2001) The melilite-bearing high-temperature skarns of the Apuseni Mountains, Carpathians, Romania. Can Mineral 39:1405–1434

    Google Scholar 

  • Pecskay Z, Eleftheriadis G, Koroneos A, Soldatos T, Christofides G (2003) K/Ar dating, geochemistry and evolution of the Tertiary volcanic rocks (Thrace, northeastern Greece). In: Eliopoulos et al (ed) Mineral exploration and sustainable development. Millpress, Rotterdam, pp 1229–1232

    Google Scholar 

  • Perugini D, Poli G, Christofides G, Eleftheriadis G, Koroneos A, Soldatos T (2004) Mantle-derived and crustal melts dichotomy in northern Greece: spatiotemporal and geodynamic implications. Geol J 39:63–80

    Google Scholar 

  • Pouchou JL, Pichoir F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In: Heinrich KFJ, Newbury DE (eds) Electron probe quantitation. Plenum, New York, pp 31–75

    Google Scholar 

  • Rancourt DG, McDonald AM, Lalonde AE, ** JA (1993) Mössbauer absorber thicknesses for accurate site populations in Fe- bearing minerals. Am Mineral 78:1–7

    Google Scholar 

  • Rancourt DG, ** JY, Berman RG (1994) Mössbauer spectroscopy of minerals. III. Octahedral-site Fe2+ quadrupole splitting distributions in the phlogopite–annite series. Phys Chem Mineral 21:258–267

    Article  Google Scholar 

  • Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172:567–570

    Google Scholar 

  • Rossman GR, Aines RD (1991) The hydrous components in garnets: Grossular–hydrogrossular. Am Mineral 76:1153–1164

    Google Scholar 

  • Russell JK, Dipple GM, Lang JR, Lueck B (1999) Major-element discrimination of titanian andradite from magmatic and hydrothermal environments: an example from the Canadian Cordillera. Eur J Mineral 11:919–935

    Google Scholar 

  • Schingaro E, Scordari F, Capitanio F, Parodi G, Smith DC, Mottana A (2001) Crystal chemistry of kimzeyite from Anguillara, Mts. Sabatini, Italy. Eur J Mineral 13:749–759

    Google Scholar 

  • Schwarz KB, Nolet DA, Burns RG (1980) Mössbauer spectroscopy in crystal chemistry of natural Fe–Ti garnets. Am Mineral 65:142–153

    Google Scholar 

  • Scordari F, Schingaro E, Pedrazzi G (1999) Crystal chemistry of melanites from Mt Vulture (Southern Italy). Eur J Mineral 11:855–869

    Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystal A32:751–767

    Google Scholar 

  • Sheldrick GM (1997) SHELXTL (computer program) Vers 5.1, BrukerAXS Inc

  • Sheldrick (2002) SADABS (computer program) Vers. 2.03, BrukerAXS Inc

  • Sideris C (1973) Petrochemistry of some volcanic rocks from West Thrace. Tectonic and petrochemical relationships with volcanics of Greece. Chem Erde 32:174–195

    Google Scholar 

  • Smith DC, Parodi GC, Capitanio F (1996) The Raman spectrum of the Si-poor (Ti–Zr)-rich garnet kimzeyite from Anguillara, Latium, Italy. Terra Nova Abs Supl 2:10

    Google Scholar 

  • Tappe S, Foley SF, Jenner GA, Heaman LM, Kjarsgaard BA, Romer RL, Stracke A, Joyce N, Hoefs J (2006) Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, Labrador: a consequence of incipient lithospheric thinning beneath the North Atlantic Craton. J Petrol 47:1261–1315

    Google Scholar 

  • Tarte P (1965) Etude expérimentale et interprétation du spectre infrarouge de silicates et de germanates. Application à des problèmes structuraux relatives à l’état solide. Acad R Belg Classe Sci Mem 35:4a:260, 4b:134

  • Tarte P, Cahay R, Garcia A (1979) Infrared spectrum and structural role of titanium in synthetic Ti-garnets. Phys Chem Mineral 4:55–63

    Google Scholar 

  • Voudouris P (2006) A comparative mineralogical study of Te-rich magmatic-hydrothermal systems in northeastern Greece. Mineral Petrol 87:241–275

    Google Scholar 

  • Voudouris P, Katerinopoulos A (2004) New occurrences of mineral megacrysts in Tertiary magmatic-hydrothermal and epithermal envirnonments in Greece. Documenta Naturae 151:1–21

    Google Scholar 

  • Voudouris P, Katerinopoulos A, Magganas A (2005) Skarn mineralogy of a shoshonitic plutonic complex (Maronia, NE Greece). 2nd Congress Econ Geol Comm, Geol Soc Greece, sp. vol 19–28 (in Greek with English abstract)

  • Wones DR, Eugster HP (1965) Stability of biotite: experiment theory and application. Am Mineral 50:1228–1272

    Google Scholar 

  • Zedlitz O (1933) Über titanreichen Kalkeisengranat. Zentrabl Min A 225–239

Download references

Acknowledgments

The authors wish to thank Gerold Tippelt, Division of Mineralogy and Material Science, University of Salzburg, for technical assistance. Additional thanks are due to Prof. Anton Beran, University of Vienna, for his valuable help with the single-crystal IR measurements. This manuscript was greatly improved by the comments and suggestions made by Drs. Tonci Balic-Zunic, John Bailey and Anton Chakhmouradian and by the two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Katerinopoulou.

Additional information

Editorial handling: A. R. Chakhmouradian

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katerinopoulou, A., Katerinopoulos, A., Voudouris, P. et al. A multi-analytical study of the crystal structure of unusual Ti–Zr–Cr-rich Andradite from the Maronia skarn, Rhodope massif, western Thrace, Greece. Miner Petrol 95, 113–124 (2009). https://doi.org/10.1007/s00710-008-0023-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-008-0023-4

Keywords

Navigation