Log in

Anti-cancer labdane diterpenoids from adventitious roots of Andrographis paniculata: augmentation of production prospect endowed with pathway gene expression

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Andrographolide (AD) is the time-honoured pharmacologically active constituent of the traditionally renowned medicinal plant—Andrographis paniculata. Advancements in the target-oriented drug discovery process have further unravelled the immense therapeutic credibility of another unique molecule—neoandrographolide (NAD). The escalated market demand of these anti-cancer diterpenes is increasingly facing unrelenting hurdles of demand and supply disparity, attributable to their limited yield. Callus and adventitious root cultures were generated to explore their biosynthetic potentials which first time revealed NAD production along with AD. Optimization of the types and concentrations of auxins along with media form and cultivation time led to the successful tuning towards establishing adventitious roots as a superior production alternative for both AD/NAD. Supplementation of IBA to the NAA + Kn-containing MS medium boosted the overall growth and AD/NAD synthesis in the adventitious roots. Compared to control leaves, the adventitious root exhibited about 2.61- and 8.8-fold higher contents of AD and NAD, respectively. The qRT-PCR involving nine key pathway genes was studied, which revealed upregulation of GGPS1 and HMGR1/2 genes and downregulation of DXS1/2 and HDR1/2 genes in the adventitious root as compared to that in the control leaves. Such observations highlight that in vitro cultures can serve as efficient production alternatives for AD/NAD as the cytosolic genes (HMGR1/2 of MVA pathway) are competent enough to take over from the plastidial genes (DXS1/2 and HDR1/2 of MEP pathway), provided the accredited first branch-point regulatory gene (GGPS) expression and the culture requirements are optimally fulfilled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad N, Fatima N, Ahmad I, Anis M (2015) Effect of PGRs in adventitious root culture in vitro: present scenario and future prospects. Rend Fis Acc Lincei 26(3):307–321. https://doi.org/10.1007/s12210-015-0445-y

    Article  Google Scholar 

  • Aromdee C (2014) Andrographolide: progression in its modifications and applications—a patent review (2012–2014). Expert Opin Ther Pat 24(10):1129–1138. https://doi.org/10.1517/13543776.2014.956084

    Article  PubMed  CAS  Google Scholar 

  • Atanasov GA, Waltenberger B, Pferschy WME, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss HE, Rollinger JM, Schuster D, Breuss MJ, Bochkov V, Mihovilovic DM, Kopp B, Bauer R, Dirsch MV, Stuppner H (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33(8):1582–1614. https://doi.org/10.1016/j.biotechadv.2015.08.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Batkhuu J, Hattori K, Takano F, Fushiya S, Oshiman KI, Fujimiya Y (2002) Suppression of NO production in activated macrophages in vitro and ex vivo by neoandrographolide isolated from Andrographis paniculata. Biol Pharm Bull 25(9):1169–1174. https://doi.org/10.1248/bpb.25.1169

    Article  PubMed  CAS  Google Scholar 

  • Bindu BBV, Srinath M, Shailaja A, Giri CC (2017) Comparative protein profile studies and in silico structural/functional analysis of HMGR (ApHMGR) in Andrographis paniculata (Burm.f.) Wall. ex Nees. Ann Phytomed 6:30–44

    Article  Google Scholar 

  • Cai Z, Kastell A, Knorr D, Smetanska I (2012) Exudation: an expanding technique for continuous production and release of secondary metabolites from plant cell suspension and hairy root cultures. Plant Cell Rep 31(3):461–477. https://doi.org/10.1007/s00299-011-1165-0

    Article  PubMed  CAS  Google Scholar 

  • Cordell GA, Colvard MD (2012) Natural products and traditional medicine: turning on a paradigm. J Nat Prod 75:514−525

    Article  CAS  Google Scholar 

  • Cordoba E, Salmi M, Leon P (2009) Unravelling the regulatory mechanisms that modulate the MEP pathway in higher plants. J Exp Bot 60:2933–2943

    Article  PubMed  CAS  Google Scholar 

  • Dandin VS, Murthy HN (2012) Regeneration of Andrographis paniculata Nees: analysis of genetic fidelity and andrographolide content in micropropagated plants. Afr J Biotechnol 11:12464–12471

    CAS  Google Scholar 

  • De-Eknamkul W, Potduang B (2003) Biosynthesis of beta-sitosterol and stigmasterol in Croton sublyratus proceeds via a mixed origin of isoprene units. Phytochemistry 62(3):389–398. https://doi.org/10.1016/S0031-9422(02)00555-1

    Article  PubMed  CAS  Google Scholar 

  • Gaillochet C, Lohmann JU (2015) The never-ending story: from pluripotency to plant developmental plasticity. Development 142(13):2237–2249. https://doi.org/10.1242/dev.117614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gandi S, Rao K, Chodisetti B, Giri A (2012) Elicitation of andrographolide in the suspension cultures of Andrographis paniculata. Appl Biochem Biotechnol 168(7):1729–1738. https://doi.org/10.1007/s12010-012-9892-4

    Article  PubMed  CAS  Google Scholar 

  • Garg A, Agrawal L, Misra RC, Sharma S, Ghosh S (2015) Andrographis paniculata transcriptome provides molecular insights into tissue-specific accumulation of medicinal diterpenes. BMC Genomics 16:659–675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Georgiev MI (2013) Design of bioreactors for plant cell and organ cultures. In: Paek KY, Murthy HN, Zhong JJ (eds) Production of biomass and bioactive compounds using bioreactor technology. Springer, New York, London

    Google Scholar 

  • Hossain MS, Urbi Z, Sule A, Rahman KMH (2014) Andrographis paniculata (Burm. f.) Wall. ex Nees: a review of ethnobotany, phytochemistry and pharmacology. Sci World J:1–28

  • Jachak SM, Saklani A (2007) Challenges and opportunities in drug discovery from plants. Curr Sci 92:1251–1257

    CAS  Google Scholar 

  • Jha Z, Sharma SN, Sharma DK (2011) Differential expression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase of Andrographis paniculata in andrographolide accumulation. J Chem Pharm Res 3:499–504

    CAS  Google Scholar 

  • Kamdem RE, Sang S, Ho CT (2002) Mechanism of the superoxide scavenging activity of Neoandrographolide a natural product from Andrographis paniculata Nees. J Agric Food Chem 50:4662–4665

    Article  PubMed  CAS  Google Scholar 

  • Karalija E, Paric A (2011) The effect of BA and IBA on the secondary metabolite production by shoot culture of Thymus vulgaris L. Biol Nyssana 2:29–35

    Google Scholar 

  • Khan T, Abbasi BH, Khan MA, Azeem M (2017) Production of biomass and useful compounds through elicitation in adventitious root cultures of Fagonia indica. Ind Crop Prod 108:451–457. https://doi.org/10.1016/j.indcrop.2017.07.019

    Article  CAS  Google Scholar 

  • Kim YS, Hahn EJ, Yeung EC, Paek KY (2003) Lateral root development and saponin accumulation as affected by IBA or NAA in adventitious root cultures of Panax ginseng C.A. Meyer. In Vitro Cell Dev Biol Plant 39(2):245–249. https://doi.org/10.1079/IVP2002397

    Article  CAS  Google Scholar 

  • Lim JCW, Chan TK, Ng DSW, Sagineedu SR, Stanslas J, Wong WSF (2012) Andrographolide and its analogues: versatile bioactive molecules for combating inflammation and cancer. Clinical Exp Pharmacol Physiol 39(3):300–310. https://doi.org/10.1111/j.1440-1681.2011.05633.x

    Article  CAS  Google Scholar 

  • Misra RC, Garg A, Roy S, Chanotiya CS, Vasudev PG, Ghosh S (2015) Involvement of an ent-copalyl diphosphate synthase in tissue-specific accumulation of specialized diterpenes in Andrographis paniculata. Plant Sci 240:50–64. https://doi.org/10.1016/j.plantsci.2015.08.016

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15(3):473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Murthy HN, Dandin VS, Paek KY (2016) Tools for biotechnological production of useful phytochemicals from adventitious root cultures. Phytochem Rev 15(1):129–145. https://doi.org/10.1007/s11101-014-9391-z

    Article  CAS  Google Scholar 

  • Naseem A, Nigar F, Iqbal A, Anis M (2015) Effect of PGRs in adventitious root culture in vitro: present scenario and future prospects. Rend Fis Acc Lincei 26:307–321

    Article  Google Scholar 

  • Paetzold H, Garms S, Bartram S, Wieczorek J, Uros-Gracia EM, Rodriguez-Concepcion M, Boland W, Strack D, Hause B, Walter MH (2010) The isogene 1-deoxy-D-xylulose 5-phosphate synthase 2 controls isoprenoid profiles, precursor pathway allocation and density of tomato trichomes. Mol Plant 3:904–916

    Article  PubMed  CAS  Google Scholar 

  • Pandey H, Pandey P, Singh S, Gupta R, Banerjee S (2015) Production of anti-cancer triterpene (betulinic acid) from callus cultures of different Ocimum species and its elicitation. Protoplasma 252:647–655

    Article  PubMed  CAS  Google Scholar 

  • Pfisterer PH, Rollinger JM, Schyschka L, Rudy A, Vollmar AM, Stuppner H (2010) Neoandrographolide from Andrographis paniculata as a potential natural chemosensitizer. Planta Med 76(15):1698–1700. https://doi.org/10.1055/s-0030-1249876

    Article  PubMed  CAS  Google Scholar 

  • Pholphana N, Rangkadilok N, Thongnest S, Ruchirawat S, Ruchirawat M, Satayavivad J (2004) Determination and variation of three active diterpenoids in Andrographis paniculata (Burm.f.) Nees. Phytochem Anal 15(6):365–371. https://doi.org/10.1002/pca.789

    Article  PubMed  CAS  Google Scholar 

  • Pholphana N, Rangkadilok N, Saehun J, Ritruechai S (2013) Changes in the contents of four active diterpenoids at different growth stages in Andrographis paniculata (Burm.f.) Nees (Chuanxinlian). Chin Med 8(1):2. https://doi.org/10.1186/1749-8546-8-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Praveen N, Manohar SH, Naik PM, Nayeem A, Jeong JH, Murthy HN (2009) Production of andrographolide from adventitious root cultures of Andrographis paniculata. Curr Sci 96:694–697

    CAS  Google Scholar 

  • Saeed S, Ali H, Khan T, Kayani W, Khan MA (2017) Impacts of methyl jasmonate and phenyl acetic acid on biomass accumulation and antioxidant potential in adventitious roots of Ajuga bracteosa Wall ex Benth., a high valued endangered medicinal plant. Physiol Mol Biol Plants 23:229–237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schramek N, Wang H, Romisch-Margl W, Keil B, Radykewicz T, Winzenhorlein B, Beerhues L, Bacher A, Rohdich F, Gershenzon J, Liu B, Eisenreich W (2010) Artemisinin biosynthesis in growing plants of Artemisia annua. A 13CO2 study. Phytochemistry 71(2-3):179–187. https://doi.org/10.1016/j.phytochem.2009.10.015

    Article  PubMed  CAS  Google Scholar 

  • Sharma SN, Jha Z (2012) Production of andrographolide from callus and cell suspension culture of Andrographis paniculata. J Cell Tiss Res 12:3423–3429

    CAS  Google Scholar 

  • Sharma SN, Jha Z, Singh RK (2013) Establishment of in vitro adventitious root cultures and analysis of andrographolide in Andrographis paniculata. Nat Prod Commun 8:1045–1047

    PubMed  CAS  Google Scholar 

  • Sharma SN, Jha Z, Sinha RK, Geda AK (2015) Jasmonate-induced biosynthesis of andrographolide in Andrographis paniculata. Physiol Plant 153(2):221–229. https://doi.org/10.1111/ppl.12252

    Article  PubMed  CAS  Google Scholar 

  • Sharma V, Sharma T, Kaul S, Kapoor KK, Dhar MK (2017) Anticancer potential of labdane diterpenoid lactone “andrographolide” and its derivatives: a semi-synthetic approach. Phytochem Rev 16(3):513–526. https://doi.org/10.1007/s11101-016-9478-9

    Article  CAS  Google Scholar 

  • Sharmila R, Subburathinam KM, Sugumar P (2012) Effect of growth regulators on andrographolide production in callus cultures of Andrographis paniculata. Adv Bio Tech 12:17–20

    Google Scholar 

  • Singh J, Sabir F, Sangwan RS, Narnoliya L, Saxena S, Sangwan NS (2015) Enhanced secondary metabolite production and pathway gene expression by leaf explants-induced direct root morphotypes are regulated by combination of growth regulators and culture conditions in Centella asiatica (L.) urban. Plant Growth Regul 75(1):55–66. https://doi.org/10.1007/s10725-014-9931-y

    Article  CAS  Google Scholar 

  • Srivastava N, Akhila A (2010) Biosynthesis of andrographolide in Andrographis paniculata. Phytochemistry 71(11-12):1298–1304. https://doi.org/10.1016/j.phytochem.2010.05.022

    Article  PubMed  CAS  Google Scholar 

  • Steffens B, Rasmussen A (2016) The physiology of adventitious roots. Plant Physiol 170(2):603–617. https://doi.org/10.1104/pp.15.01360

    Article  PubMed  CAS  Google Scholar 

  • Subramanian R, Zaini Asmawi M, Sadikun A (2012) A bitter plant with a sweet future? A comprehensive review of an oriental medicinal plant: Andrographis paniculata. Phytochem Rev 11:39–75

    Article  CAS  Google Scholar 

  • Thakur AK, Chatterjee SS, Kumar V (2015) Adaptogenic potential of andrographolide: an active principle of the king of bitters (Andrographis paniculata). J Trad Complement Med 5(1):42–50. https://doi.org/10.1016/j.jtcme.2014.10.002

    Article  Google Scholar 

  • Vakil MMA, Mendhulkar VD (2013) Enhanced synthesis of andrographolide by Aspergillus niger and Penicillium expansum elicitors in cell suspension culture of Andrographis paniculata (Burm. f.) Nees. Bot Stud 54(1):49. https://doi.org/10.1186/1999-3110-54-49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varma A, Padh H, Shrivastava N (2009) Andrographolide: a new plant-derived antineoplastic entity on horizon. Evi Based Complement Alt Med 2011:1–9

    Google Scholar 

  • Vidyalakshmi A, Ananthi S (2013) Induction of andrographolide, a biologically active ingredient in callus of Andrographis paniculata (Burm.F) Wallich Ex. Nees. Bioengin Biosci 1:1–4

    CAS  Google Scholar 

  • Wiart C, Kumar K, Yusof MY, Hamimah H, Fauzi ZM, Sulaiman M (2005) Antiviral properties of ent-labdene diterpenes of Andrographis paniculata Nees, inhibitors of herpes simplex virus type I. Phytother Res 19(12):1069–1070. https://doi.org/10.1002/ptr.1765

    Article  PubMed  CAS  Google Scholar 

  • Wintachai P, Kaur P, Lee RCH, Ramphan S, Kuadkitkan A, Wikan N, Ubol S, Roytrakul S, Chu JJH, Smith DR (2015) Activity of andrographolide against chikungunya virus infection. Sci Rep 5(14179). https://doi.org/10.1038/srep14179

  • Yan SP, Yang RH, Wang F, Sun LN, Song XS (2017) Effect of auxins and associated metabolic changes on cuttings of hybrid Aspen. Forests 8(4):117. https://doi.org/10.3390/f8040117

    Article  Google Scholar 

  • Yu J, Liu W, Liu J, Qin P, Xu L (2017) Auxin control of root organogenesis from callus in tissue culture. Front Plant Sci 8(1385). https://doi.org/10.3389/fpls.2017.01385

  • Zaheer M, Giri CC (2015) Multiple shoot induction and jasmonic versus salicylic acid driven elicitation for enhanced andrographolide production in Andrographis paniculata. Plant Cell Tissue Organ Cult 122(3):553–563. https://doi.org/10.1007/s11240-015-0787-2

    Article  CAS  Google Scholar 

  • Zaheer M, Giri CC (2017) Enhanced diterpene lactone (andrographolide) production from elicited adventitious root cultures of Andrographis paniculata. Res Chem Intermed 43(4):2433–2444. https://doi.org/10.1007/s11164-016-2771-9

    Article  CAS  Google Scholar 

  • Zaid OI, Majid RA, Sabariah MN, Hasidah MS, Al-Zihiry K, Yam MF, Basir R (2015) Andrographolide effect on both Plasmodium falciparum infected and non-infected RBCs membranes. Asian Pac J Trop Med 8(7):507–512. https://doi.org/10.1016/j.apjtm.2015.06.007

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their sincere thanks to the Director, CSIR-CIMAP, for providing the facilities to carry out this research. SB is thankful to the National Academy of Sciences (NASI, Allahabad, India), for honouring her as a Platinum Jubilee Senior Scientist and providing the financial support to continue the research. SS is also thankful to NASI, Allahabad, India, and PP to the Department of Science and Technology (DST, New Delhi, India), for financial support in the form of fellowships. This work is carried out under a NASI project (GAP-365).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suchitra Banerjee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Peter Nick

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Pandey, P., Ghosh, S. et al. Anti-cancer labdane diterpenoids from adventitious roots of Andrographis paniculata: augmentation of production prospect endowed with pathway gene expression. Protoplasma 255, 1387–1400 (2018). https://doi.org/10.1007/s00709-018-1211-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-018-1211-7

Keywords

Navigation