Log in

On Stefan-type moving boundary problems with heterogeneity: canonical reduction via conjugation of reciprocal transformations

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Here, two distinct kinds of reciprocal transformation are employed in conjunction to reduce a wide class of nonlinear moving boundary problems with heterogeneity to analytically solvable canonical forms. These are associated, in turn, with a classical Stefan problem and with one with variable latent heat relevant to the analysis of the evolution of seepage fronts in soil mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rubenstein, L.I.: The Stefan Problem, American Mathematical Society Translations, vol. 27. American Mathematical Society, Providence (1971)

    Google Scholar 

  2. Friedman, A.: Variational Principles and Free Boundary Problems. Wiley, New York (1982)

    MATH  Google Scholar 

  3. Elliot, C.M., Ockendon, J.R.: Weak and Variational Methods for Moving Boundary Problems, Research Notes in Mathematics, vol. 59. Pitman, New York (1982)

    Google Scholar 

  4. Crank, J.: Free and Moving Boundary Value Problems. Clarendon Press, Oxford (1984)

    MATH  Google Scholar 

  5. Alexides, V., Solomon, A.D.: Mathematical Modelling of Melting and Freezing Processes. Taylor and Francis, Washington (1996)

    Google Scholar 

  6. Tarzia, D.A.: A bibliography on moving-free boundary problems for the heat-diffusion equation. The Stefan and Related Problems. MAT Ser A 2, 1–297 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Storm, M.L.: Heat conduction in simple metals. J. Appl. Phys. 22, 940–951 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  8. Rogers, C.: Application of a reciprocal transformation to a two-phase Stefan problem. J. Phys. A Math. Gen. 18, L105–L109 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Rogers, C.: On a class of moving boundary problems in nonlinear heat conduction. Application of a Bäcklund transformation. Int. J. Nonlinear Mech. 21, 249–256 (1986)

    Article  MATH  Google Scholar 

  10. Natale, M.F., Tarzia, D.A.: Explicit solutions to the two-phase Stefan problem for Storm-type materials. J. Phys. A Math. Gen. 33, 395–404 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Briozzo, A.C., Natale, M.F.: Nonlinear Stefan problem with convective boundary condition in Storm’s materials. Zeit ang. Math. Phys. 67, 19 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rogers, C.: On a class of reciprocal Stefan moving boundary problems. Zeit. ang. Math. Phys. 66, 2069–2079 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Calogero, F., De Lillo, S.: The Burgers equation on the semi-infinite and finite intervals. Nonlinearity 2, 37–43 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rogers, C.: Moving boundary problems for the Harry Dym equation and its reciprocal associates. Zeit. ang. Math. Phys. 66, 3205–3220 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rogers, C.: Moving boundary problems for an extended Dym equation. Reciprocal connections. Meccanica 52, 3531–3540 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rogers, C.: On a class of moving boundary problems for the potential mkdV equation. Special issue, waves and stability. Ricerche di Matematica 65, 563–577 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rogers, C., Wong, P.: On reciprocal Bäcklund transformations of inverse scattering schemes. Physica Scr. 30, 10–14 (1984)

    Article  MATH  Google Scholar 

  18. Oevel, W., Rogers, C.: Gauge transformations and reciprocal links in 2+1-dimensions. Rev. Math. Phys. 5, 299–330 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hone, A.N.W.: Reciprocal transformations. Painlevé property and solutions of energy-dependent Schrödinger hierarchies. Phys. Lett. A 249, 46–54 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rogers, C., Schief, W.K.: Bäcklund and Darboux Transformations. Geometry and Modern Applications in Soliton Theory. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  21. Rogers, C., Schief, W.K.: Ermakov-type systems in nonlinear physics and continuum mechanics. In: Euler, N. (ed.) Nonlinear Systems and Their Remarkable Mathematical Structures. CRC Press, Cambridge (2018)

    Google Scholar 

  22. Voller, V.R., Swenson, J.B., Paola, C.: An analytical solution for a Stefan problem with variable latent heat. Int. J. Heat Mass Transf. 47, 5387–5390 (2004)

    Article  MATH  Google Scholar 

  23. Salva, N.N., Tarzia, D.A.: Explicit solution for a Stefan problem with variable latent heat and constant heat flux boundary conditions. J. Math. Anal. Appl. 379, 240–244 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Broadbridge, P.: Integrable forms of the one-dimensional flow equation for unsaturated heterogeneous porous media. J. Math. Phys. 29, 622–626 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rogers, C., Stallybrass, M.P., Clements, D.L.: On two phase filtration under gravity and with boundary infiltration: application of a Bäcklund transformation. Nonlinear Anal. Theory Methods Appl. 7, 785–799 (1983)

    Article  MATH  Google Scholar 

  26. Keller, J.B.: Melting and freezing at constant speed. Phys. Fluids 29, 2013 (1986)

    Article  Google Scholar 

  27. Karal, F.C., Keller, J.B.: Elastic wave propagation in homogeneous and inhomogeneous media. J. Acoust. Soc. Am. 31, 694–705 (1959)

    Article  MathSciNet  Google Scholar 

  28. Barclay, D.W., Moodie, T.B., Rogers, C.: Cylindrical impact waves in inhomogeneous Maxwellian visco-elastic media. Acta Mech. 29, 93–117 (1978)

    Article  MATH  Google Scholar 

  29. Clements, D.L., Atkinson, C., Rogers, C.: Antiplane crack problems for an inhomogeneous elastic material. Acta Mech. 29, 199–211 (1978)

    Article  MATH  Google Scholar 

  30. Rogers, C.: Reciprocal relations in non-steady one-dimensional gasdynamics. Zeit. ang. Math. Phys. 19, 58–63 (1968)

    Article  MATH  Google Scholar 

  31. Rogers, C.: Invariant transformations in non-steady gasdynamics and magnetogasdynamics. Zeit. ang. Math. Phys. 20, 370–382 (1969)

    Article  MATH  Google Scholar 

  32. Donato, A., Ramgulam, U., Rogers, C.: The 3+1-dimensional Monge-Ampère equation in discontinuity wave theory: application of a reciprocal transformation. Meccanica 27, 257–262 (1992)

    Article  MATH  Google Scholar 

  33. Rogers, C., Ruggeri, T.: A reciprocal Bäcklund transformation: application to a nonlinear hyperbolic model in heat conduction. Lett. Il. Nuovo Cimento 44, 298–296 (1985)

    Google Scholar 

  34. Fokas, A.S., Rogers, C., Schief, W.K.: Evolution of methocrylate distribution during wood saturation. A nonlinear moving boundary problem. Appl. Math. Lett. 18, 321–328 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rogers, C., Schief, W.K.: The classical Korteweg capillarity system: geometry and invariant transformations. J. Phys. A Math. Theor. 47, 345201 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rogers, C., Malomed, B.: On Madelung systems in nonlinear optics: a reciprocal invariance. J. Math. Phys. 59, 051506 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Bollati, J., Tarzia, D.A.: Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed face. Zeit. ang. Math. Phys. 69, 38 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rogers, C., Broadbridge, P.: On a nonlinear moving boundary problem with heterogeneity: application of a reciprocal transformation. Zeit. ang. Math. Phys. 39, 122–128 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin Rogers.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogers, C. On Stefan-type moving boundary problems with heterogeneity: canonical reduction via conjugation of reciprocal transformations. Acta Mech 230, 839–850 (2019). https://doi.org/10.1007/s00707-018-2329-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2329-6

Navigation