Log in

Stress analysis of multi-layered hollow anisotropic composite cylindrical structures using the homogenization method

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper presents a general and efficient stress analysis strategy for hollow composite cylindrical structures consisting of multiple layers of different anisotropic materials subjected to different loads. Cylindrical material anisotropy and various loading conditions are considered in the stress analysis. The general stress solutions for homogenized hollow anisotropic cylinders subjected to pressure, axial force, torsion, shear and bending are presented with explicit formulations under typical force and displacement boundary conditions. The stresses and strains in a layer of the composite cylindrical structures are obtained from the solutions of homogenized hollow cylinders with effective material properties and discontinuous layer material properties. Effective axial, torsional, bending and coupling stiffness coefficients taking into account material anisotropy are also determined from the strain solutions for the hollow composite cylindrical structures. Examples show that the material anisotropy may have significant effects on the effective stiffness coefficients in some cases. The stress analysis method is demonstrated with an example of stress analysis of a 22-layer composite riser, and the results are compared with numerical solutions. This method is efficient for stress analysis of thin-walled or moderately thick-walled hollow composite cylindrical structures with various multiple layers of different materials or arbitrary fiber angles because no explicit interfacial continuity parameters are required. It provides an efficient and easy-to-use analysis tool for assessing hollow composite cylindrical structures in engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lekhnitskii S.G.: Theory of Elasticity of an Anisotropic Body. Mir Publishers, Moscow (1981)

    MATH  Google Scholar 

  2. Jolicoeur C., Cardou A.: Analytical solution for bending of coaxial orthotropic cylinders. J. Eng. Mech. ASCE 120, 2556–2574 (1994)

    Article  Google Scholar 

  3. Chouchaoui C.S., Ochoa O.O.: Similitude study for a laminated cylindrical tube under tensile, torsion, bending, internal and external pressure. Part I: governing equations. Compos. Struct. 44, 221–229 (1999)

    Article  Google Scholar 

  4. Chouchaoui C.S., Parks P., Ochoa O.O.: Similitude study for a laminated cylindrical tube under tensile, torsion, bending, internal and external pressure. Part II: scale models. Compos. Struct. 44, 231–236 (1999)

    Article  Google Scholar 

  5. Wild P.M., Vickers G.W.: Analysis of filament-wound cylindrical shells under combined centrifugal, pressure and axial loading. Compos. Part A Appl. S. 28, 47–55 (1997)

    Article  Google Scholar 

  6. Parnas L., Katirci N.: Design of fiber-reinforced composite pressure vessels under various loading conditions. Compos. Struct. 58, 83–95 (2002)

    Article  Google Scholar 

  7. Verijenko V.E., Adali S., Tabakov P.Y.: Stress distribution in continuously heterogeneous thick laminated pressure vessels. Compos. Struct. 54, 371–377 (2001)

    Article  Google Scholar 

  8. **a M., Takayanagi H., Kemmochi K.: Bending behavior of filament-wound fiber-reinforced sandwich pipes. Compos. Struct. 56, 201–210 (2002)

    Article  Google Scholar 

  9. Stroh A.N.: Dislocations and cracks in anisotropic elasticity. Philos. Mag. 3, 625–646 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ting T.C.T.: Anisotropic Elasticity: Theory and Applications. Oxford Science Publications, New York (1996)

    MATH  Google Scholar 

  11. Kollár L.P., Springer G.S.: Stress analysis of anisotropic laminated cylinders and cylindrical segments. Int. J. Solids Struct. 29, 1499–1517 (1992)

    Article  MATH  Google Scholar 

  12. Kollár L.P., Patterson J.M., Springer G.S.: Composite cylinders subjected to hygrothermal and mechanical loads. Int. J. Solids Struct. 29, 1519–1534 (1992)

    Article  MATH  Google Scholar 

  13. Bhaskar K., Varadan T.K.: Exact elasticity solution for laminated anisotropic cylindrical shells. J. Appl. Mech. ASME 60, 41–47 (1993)

    Article  MATH  Google Scholar 

  14. **a M., Takayanagi H., Kemmochi K.: Analysis of multi-layered filament-wound composite pipes under internal pressure. Compos. Struct. 53, 483–491 (2001)

    Article  Google Scholar 

  15. **a M., Kemmochi K., Takayanagi H.: Analysis of filament-wound fiber-reinforced sandwich pipe under combined internal pressure and thermomechanical loading. Compos. Struct. 51, 273–283 (2001)

    Article  Google Scholar 

  16. Bakaiyan H., Hosseini H., Ameri E.: Analysis of multi-layered filament-wound composite pipes under combined internal pressure and thermomechanical loading with thermal variations. Compos. Struct. 88, 532–541 (2009)

    Article  Google Scholar 

  17. Calhoglu H., Ergun E., Demirdag O.: Stress analysis of filament-wound composite cylinders under combined internal pressure and thermal loading. Adv. Compos. Lett. 17, 13–21 (2008)

    Google Scholar 

  18. Tarn J.Q., Wang Y.M.: Laminated composite tubes under extension, torsion, bending, shearing and pressuring: a state space approach. Int. J. Solids Struct. 38, 9053–9075 (2001)

    Article  MATH  Google Scholar 

  19. Tarn J.Q.: A state space formalism for anisotropic elasticity. Part II: cylindrical anisotropy. Int. J. Solids Struct. 39, 5157–5172 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Panda S.C., Natarajan R.: Finite element analysis of laminated composite plates. Int. J. Numer. Methods Eng. 14, 69–79 (1979)

    Article  MATH  Google Scholar 

  21. Karan S.S., Sorem R.M.: Curved shell elements based on hierarchical p-approximation in the thickness direction for linear static analysis of laminated composites. Int. J. Numer. Methods Eng. 29, 1391–1420 (1990)

    Google Scholar 

  22. Buragohain D.N., Ravichandran P.K.: Modified 3-dimensional finite-element for general and composite shells. Comput. Struct. 51, 289–298 (1994)

    Article  MATH  Google Scholar 

  23. ABAQUS Analysis User’s Manual, Version 6.11 (2011)

  24. Lomakin E.V.: Torsion of cylindrical bodies with varying strain properties. Mech. Solids 43, 502–511 (2008)

    Article  Google Scholar 

  25. Babuška I.: Homogenization approach in engineering. Lect. Notes Econ. Math. Syst. 134, 137–153 (1976)

    Article  Google Scholar 

  26. Sanchez-Palencia E.: Homogenization method for the study of composite media. Lect. Notes Math. 985, 192–214 (1983)

    Article  MathSciNet  Google Scholar 

  27. Sanchez-Palencia E.: Homogenization in mechanics. A survey of solved and open problems. Rend. Sem. Mat. Univ. Politec. Torino 44, 1–45 (1986)

    MATH  MathSciNet  Google Scholar 

  28. Hashin Z.: Analysis of composite materials—a survey. J. Appl. Mech. ASME 50, 481–505 (1983)

    Article  MATH  Google Scholar 

  29. Charalambakis, N.: Homogenization techniques and micromechanics. A survey and perspectives. Appl. Mech. Rev. 63, 030803-1–10 (2010)

    Google Scholar 

  30. Enie R.B., Rizzo R.R.: Three-dimensional laminate moduli. J. Compos. Mater. 14, 150–154 (1970)

    Google Scholar 

  31. Pagano N.J.: Exact moduli of anisotropic laminates. In: Sendeckyj, G.P. (eds) Mechanics of Composite Materials, pp. 23–44. Academic Press, New York (1974)

    Google Scholar 

  32. Sun C.T., Li S.: Three-dimensional effective elastic constants for thick laminates. J. Compos. Mater. 22, 629–639 (1988)

    Article  Google Scholar 

  33. Chen H.J., Tsai S.W.: Three-dimensional effective moduli of symmetric laminates. J. Compos. Mater. 30, 906–917 (1996)

    Article  Google Scholar 

  34. Sun, X.S., Chen, Y., Tan, V.B.C., Jaiman, R.K., Tay, T.E.: Homogenization and stress analysis of multi-layered composite offshore production risers. J. Appl. Mech. Trans. ASME 81, 031003 (2013). doi:10.1115/1.4024695

  35. Soden P.D., Hinton M.J., Kaddour A.S.: Lamina properties, lay-up configurations and loading conditions for a range of fibre-reinforced composite laminates. Compos. Sci. Technol. 58, 1011–1022 (1998)

    Article  Google Scholar 

  36. Chen, Y., Tan, L.B., Jaiman, R.K., Sun, X.S., Tay T.E., Tan, V.B.C.: Global-local analysis of a full-scale composite riser during vortex-induced vibration. In: Proceedings of the 32nd International Conference on Offshore Mechanics and Arctic Engineering (OMAE 2013), OMAE2013-11632 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. C. Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X.S., Tan, V.B.C., Chen, Y. et al. Stress analysis of multi-layered hollow anisotropic composite cylindrical structures using the homogenization method. Acta Mech 225, 1649–1672 (2014). https://doi.org/10.1007/s00707-013-1017-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-1017-9

Keywords

Navigation