1 Introduction

The ripple effect of the SARS-CoV-2 pathogen has caused unprecedented havoc to humans and economies. The current corona virus (COVID-19) disease, caused by SARS-CoV-2 pathogen, first came to attention in a cluster of cases with atypical pneumonia cases in Hubei province, China. The virus rapidly broke out within China and continued to spread all over the world. Since then, enormous efforts have been taken to contain virus transmission; nonetheless, the disease continued to spread globally. On March 11, 2020, the World Health Organization (WHO) declared COVID-19 as a global pandemic (WHO 2020).

Multiple factors can influence the transmission of corona viruses including climatic conditions, geographical factors, population density, and other social factors (Dalziel et al. 2018; Liu et al. 2020). A plethora of studies have indicated that during cold and low humidity conditions, the respiratory infection was enhanced unusually, indicating low temperature and low humidity might significantly contribute to the transmission and survival of the corona viruses (Davis et al. 2016; Rendana 2020; Wang et al. 2020). Several studies (Cai et al. 2007; Casanova et al. 2010; Shi et al. 2020) emphasized that environmental factors may affect corona virus viability through its transmission routes. Several retrospect studies have revealed that temperature and humidity might have affected the SARS outbreak and gradually faded away with warmer weather conditions (Cao et al. 2016; Liu et al. 2020; Tan et al. 2005). Similar to SARS, epidemiological studies have revealed that droplet-mediated viral diseases like influenza have also shown sensitivity to meteorological factors. This finding indicates that cold-dry weather condition is aiding for its survival and propagation (Lowen et al. 2007; Shaman and Kohn 2009; Wang et al. 2020). It has been speculated that climatic conditions might slow down the transmission of COVID-19, as happened with influenza (Briz-Redón and Serrano-Aroca 2020; Shaman and Kohn 2009) and preliminary evidence from other corona viruses (Briz-Redón and Serrano-Aroca 2020).

The association between meteorological factors and SARS-CoV-2 transmission has been investigated by many studies throughout the world (O'Reilly et al. 2020; Oliveiros et al. 2020; Sajadi et al. 2020; Shi et al. 2020; Wei et al. 2020). Among the meteorological factors, temperature, humidity, wind speed, and precipitation are considered to be crucial meteorological factors in predicting COVID-19 transmission (Zhang et al. 2020). Therefore, it is imperative to explore the potential effects of weather variability on the spread and viability of the SARS-CoV-2 (** urgent mechanisms and policies to tackle the COVID-19 outbreak in Bangladesh considering all influencing factors including the meteorological issues. Moreover, the findings of this study might be useful for future studies in other countries with similar climate conditions and population density.