Log in

Neuroprotective effect of (–)-epigallocatechin-3-gallate in rats when administered pre- or post-traumatic brain injury

  • Neurology and Preclinical Neurological Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Our previous study indicated that consuming (–)-epigallocatechin gallate (EGCG) before or after traumatic brain injury (TBI) eliminated free radical generation in rats, resulting in inhibition of neuronal degeneration and apoptotic death, and improvement of cognitive impairment. Here we investigated the effects of administering EGCG at various times pre- and post-TBI on cerebral function and morphology. Wistar rats were divided into five groups and were allowed access to (1) normal drinking water, (2) EGCG pre-TBI, (3) EGCG pre- and post-TBI, (4) EGCG post-TBI, and (5) sham-operated group with access to normal drinking water. TBI was induced with a pneumatic controlled injury device at 10 weeks of age. Immunohistochemistry and lipid peroxidation studies revealed that at 1, 3, and 7 days post-TBI, the number of 8-Hydroxy-2′-deoxyguanosine-, 4-Hydroxy-2-nonenal- and single-stranded DNA (ssDNA)-positive cells, and levels of malondialdehyde around the damaged area were significantly decreased in all EGCG treatment groups compared with the water group (P < 0.05). Although there was a significant increase in the number of surviving neurons after TBI in each EGCG treatment group compared with the water group (P < 0.05), significant improvement of cognitive impairment after TBI was only observed in the groups with continuous and post-TBI access to EGCG (P < 0.05). These results indicate that EGCG inhibits free radical-induced neuronal degeneration and apoptotic death around the area damaged by TBI. Importantly, continuous and post-TBI access to EGCG improved cerebral function following TBI. In summary, consumption of green tea may be an effective therapy for TBI patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aktas O, Prozorovski T, Smorodchenko A, Savaskan NE, Lauster R, Kloetzel PM, Infante-Duarte C, Brocke S, Zipp F (2004) Green tea epigallocatechin-3-gallate mediates T cellular NF-kappa B inhibition and exerts neuroprotection in autoimmune encephalomyelitis. J Immunol 173:5794–5800

    PubMed  CAS  Google Scholar 

  • Amemiya S, Kamiya T, Nito C, Inaba T, Kato K, Ueda M, Shimazaki K, Katayama Y (2005) Anti-apoptotic and neuroprotective effects of edaravone following transient focal ischemia in rats. Eur J Pharmacol 516:125–130

    Article  PubMed  CAS  Google Scholar 

  • Ates O, Cayli S, Altinoz E, Gurses I, Yucel N, Sener M, Kocak A, Yologlu S (2007) Neuroprotection by resveratrol against traumatic brain injury in rats. Mol Cell Biochem 294:137–144

    Article  PubMed  CAS  Google Scholar 

  • Buffo A, Rolando C, Ceruti S (2010) Astrocytes in the damaged brain: molecular and cellular insights into their reactive response and healing potential. Biochem Pharmacol 79:77–89

    Article  PubMed  CAS  Google Scholar 

  • Chan PH, Fishman RA, Longar S, Chen S, Yu A (1985) Cellular and molecular effects of polyunsaturated fatty acids in brain ischemia and injury. Prog Brain Res 63:227–235

    Article  PubMed  CAS  Google Scholar 

  • Chirumamilla S, Sun D, Bullock MR, Colello RJ (2002) Traumatic brain injury induced cell proliferation in the adult mammalian central nervous system. J Neurotrauma 19:693–703

    Article  PubMed  CAS  Google Scholar 

  • Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438

    Article  PubMed  CAS  Google Scholar 

  • Hall ED, Braughler JM (1989) Central nervous system trauma and stroke. II. Physiological and pharmacological evidence for involvement of oxygen radicals and lipid peroxidation. Free Radic Biol Med 6:303–313

    Article  PubMed  CAS  Google Scholar 

  • Hata R, Gillardon F, Michaelidis TM, Hossmann KA (1999) Targeted disruption of the bcl-2 gene in mice exacerbates focal ischemic brain injury. Metab Brain Dis 14:117–124

    Article  PubMed  CAS  Google Scholar 

  • Herges K, Millward JM, Hentschel N, Infante-Duarte C, Aktas O, Zipp F (2011) Neuroprotective effect of combination therapy of glatiramer acetate and epigallocatechin-3-gallate in neuroinflammation. PLoS ONE 6:e25456

    Article  PubMed  CAS  Google Scholar 

  • Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ (1990) Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348:334–336

    Article  PubMed  CAS  Google Scholar 

  • Hong JT, Ryu SR, Kim HJ, Lee JK, Lee SH, Kim DB, Yun YP, Ryu JH, Lee BM, Kim PY (2000) Neuroprotective effect of green tea extract in experimental ischemia-reperfusion brain injury. Brain Res Bull 53:743–749

    Article  PubMed  CAS  Google Scholar 

  • Irving EA, Bamford M (2002) Role of mitogen- and stress-activated kinases in ischemic injury. J Cereb Blood Flow Metab 22:631–647

    Article  PubMed  CAS  Google Scholar 

  • Itoh T, Satou T, Hashimoto S, Ito H (2005) Isolation of neural stem cells from damaged rat cerebral cortex after TBI. NeuroReport 16:1687–1691

    Article  PubMed  Google Scholar 

  • Itoh T, Satou T, Hashimoto S, Ito H (2007) Immature and mature neurons coexist among glial scars after rat traumatic brain injury. Neurol Res 29:734–742

    Article  PubMed  CAS  Google Scholar 

  • Itoh T, Satou T, Nishida S, Tsubaki M, Hashimoto S, Ito H (2009a) Improvement of cerebral function by anti-amyloid precursor protein antibody infusion after traumatic brain injury in rats. Mol Cell Biochem 324:191–199

    Article  PubMed  CAS  Google Scholar 

  • Itoh T, Satou T, Nishida S, Tsubaki M, Hashimoto S, Ito H (2009b) The novel free radical scavenger, edaravone, increases neural stem cell number around the area of damage following rat traumatic brain injury. Neurotox Res 16:378–389

    Article  PubMed  CAS  Google Scholar 

  • Itoh T, Satou T, Nishida S, Tsubaki M, Imano M, Hashimoto S, Ito H (2010) Edaravone protects against apoptotic neuronal cell death and improves cerebral function after traumatic brain injury in rats. Neurochem Res 35:348–355

    Article  PubMed  CAS  Google Scholar 

  • Itoh T, Imano M, Nishida S, Tsubaki M, Hashimoto S, Ito A, Satou T (2011a) (–)-epigallocatechin-3-gallate protects against neuronal cell death and improves cerebral function after traumatic brain injury in rats. Neuromolecular Med 13:300–309

    Article  PubMed  CAS  Google Scholar 

  • Itoh T, Imano M, Nishida S, Tsubaki M, Hashimoto S, Ito A, Satou T (2011b) Exercise inhibits neuronal apoptosis and improves cerebral function following rat traumatic brain injury. J Neural Transm 118:1263–1272

    Article  PubMed  Google Scholar 

  • Itoh T, Imano M, Nishida S, Tsubaki M, Mizuguchi N, Hashimoto S, Ito A, Satou T (2012) (–)-epigallocatechin-3-gallate increases the number of neural stem cells around the damaged area after rat traumatic brain injury. J Neural Transm. doi: 10.1007/s00702-011-0764-9

  • Jang S, Jeong HS, Park JS, Kim YS, ** CY, Seol MB, Kim BC, Lee MC (2010) Neuroprotective effects of (–)-epigallocatechin-3-gallate against quinolinic acid-induced excitotoxicity via PI3 K pathway and NO inhibition. Brain Res 1313:25–33

    Article  PubMed  CAS  Google Scholar 

  • Kawamata T, Katayama Y, Hovda DA, Yoshino A, Becker DP (1995) Lactate accumulation following concussive brain injury: the role of ionic fluxes induced by excitatory amino acids. Brain Res 674:196–204

    Article  PubMed  CAS  Google Scholar 

  • Kim CY, Lee C, Park GH, Jang JH (2009) Neuroprotective effect of epigallocatechin-3-gallate against beta-amyloid-induced oxidative and nitrosative cell death via augmentation of antioxidant defense capacity. Arch Pharm Res 32:869–881

    Article  PubMed  CAS  Google Scholar 

  • Kontos HA (1985) George E. Brown memorial lecture. Oxygen radicals in cerebral vascular injury. Circ Res 57:508–516

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Suh S, Kim S (2000) Protective effects of the green tea polyphenol (–)-epigallocatechin gallate against hippocampal neuronal damage after transient global ischemia in gerbils. Neurosci Lett 287:191–194

    Article  PubMed  CAS  Google Scholar 

  • Lee SY, Kim CY, Lee JJ, Jung JG, Lee SR (2003) Effects of delayed administration of (–)-epigallocatechin gallate, a green tea polyphenol on the changes in polyamine levels and neuronal damage after transient forebrain ischemia in gerbils. Brain Res Bull 61:399–406

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Bae JH, Lee SR (2004) Protective effect of green tea polyphenol EGCG against neuronal damage and brain edema after unilateral cerebral ischemia in gerbils. J Neurosci Res 77:892–900

    Article  PubMed  CAS  Google Scholar 

  • Lee EJ, Lee MY, Chen HY, Hsu YS, Wu TS, Chen ST, Chang GL (2005) Melatonin attenuates gray and white matter damage in a mouse model of transient focal cerebral ischemia. J Pineal Res 38:42–52

    Article  PubMed  CAS  Google Scholar 

  • Lin LC, Wang MN, Tseng TY, Sung JS, Tsai TH (2007) Pharmacokinetics of (–)-epigallocatechin-3-gallate in conscious and freely moving rats and its brain regional distribution. J Agric Food Chem 55:1517–1524

    Article  PubMed  CAS  Google Scholar 

  • Loren DJ, Seeram NP, Schulman RN, Holtzman DM (2005) Maternal dietary supplementation with pomegranate juice is neuroprotective in an animal model of neonatal hypoxic-ischemic brain injury. Pediatr Res 57:858–864

    Article  PubMed  CAS  Google Scholar 

  • Mandel S, Weinreb O, Amit T, Youdim MB (2004) Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (–)-epigallocatechin-3-gallate: implications for neurodegenerative diseases. J Neurochem 88:1555–1569

    Article  PubMed  CAS  Google Scholar 

  • Mandel SA, Avramovich-Tirosh Y, Reznichenko L, Zheng H, Weinreb O, Amit T, Youdim MB (2005) Multifunctional activities of green tea catechins in neuroprotection. Modulation of cell survival genes, iron-dependent oxidative stress and PKC signaling pathway. Neurosignals 14:46–60

    Article  PubMed  CAS  Google Scholar 

  • Martinou JC, Dubois-Dauphin M, Staple JK, Rodriguez I, Frankowski H, Missotten M, Albertini P, Talabot D, Catsicas S, Pietra C et al (1994) Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 13:1017–1030

    Article  PubMed  CAS  Google Scholar 

  • McGraw J, Hiebert GW, Steeves JD (2001) Modulating astrogliosis after neurotrauma. J Neurosci Res 63:109–115

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa K, Ninomiya M, Okubo T, Aoi N, Juneja LR, Kim M, Yamanaka K, Miyazawa T (1999) Tea catechin supplementation increases antioxidant capacity and prevents phospholipid hydroperoxidation in plasma of humans. J Agric Food Chem 47:3967–3973

    Article  PubMed  CAS  Google Scholar 

  • Park JW, Jang YH, Kim JM, Lee H, Park WK, Lim MB, Chu YK, Lo EH, Lee SR (2009) Green tea polyphenol (–)-epigallocatechin gallate reduces neuronal cell damage and up-regulation of MMP-9 activity in hippocampal CA1 and CA2 areas following transient global cerebral ischemia. J Neurosci Res 87:567–575

    Article  PubMed  CAS  Google Scholar 

  • Rice AC, Khaldi A, Harvey HB, Salman NJ, White F, Fillmore H, Bullock MR (2003) Proliferation and neuronal differentiation of mitotically active cells following traumatic brain injury. Exp Neurol 183:406–417

    Article  PubMed  CAS  Google Scholar 

  • Sakurai M, Nagata T, Abe K, Horinouchi T, Itoyama Y, Tabayashi K (2003) Oxidative damage and reduction of redox factor-1 expression after transient spinal cord ischemia in rabbits. J Vasc Surg 37:446–452

    Article  PubMed  Google Scholar 

  • Sauerbeck A, Gao J, Readnower R, Liu M, Pauly JR, Bing G, Sullivan PG (2011) Pioglitazone attenuates mitochondrial dysfunction, cognitive impairment, cortical tissue loss, and inflammation following traumatic brain injury. Exp Neurol 227:128–135

    Article  PubMed  CAS  Google Scholar 

  • Suganuma M, Okabe S, Oniyama M, Tada Y, Ito H, Fujiki H (1998) Wide distribution of [3H](–)-epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse tissue. Carcinogenesis 19:1771–1776

    Article  PubMed  CAS  Google Scholar 

  • Sugawara T, Noshita N, Lewen A, Gasche Y, Ferrand-Drake M, Fujimura M, Morita-Fujimura Y, Chan PH (2002) Overexpression of copper/zinc superoxide dismutase in transgenic rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway of caspase activation. J Neurosci 22:209–217

    PubMed  CAS  Google Scholar 

  • Tsuji M, Inanami O, Kuwabara M (2000) Neuroprotective effect of alpha-phenyl-N-tert-butylnitrone in gerbil hippocampus is mediated by the mitogen-activated protein kinase pathway and heat shock proteins. Neurosci Lett 282:41–44

    Article  PubMed  CAS  Google Scholar 

  • Walton KM, DiRocco R, Bartlett BA, Koury E, Marcy VR, Jarvis B, Schaefer EM, Bhat RV (1998) Activation of p38MAPK in microglia after ischemia. J Neurochem 70:1764–1767

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Karlsson JO, Zhu C, Bahr BA, Hagberg H, Blomgren K (2001) Caspase-3 activation after neonatal rat cerebral hypoxia-ischemia. Biol Neonate 79:172–179

    Article  PubMed  CAS  Google Scholar 

  • Weinreb O, Amit T, Mandel S, Youdim MB (2009) Neuroprotective molecular mechanisms of (–)-epigallocatechin-3-gallate: a reflective outcome of its antioxidant, iron chelating and neuritogenic properties. Genes Nutr 4:283–296

    Article  PubMed  CAS  Google Scholar 

  • Weissman L, de Souza-Pinto NC, Stevnsner T, Bohr VA (2007) DNA repair, mitochondria, and neurodegeneration. Neuroscience 145:1318–1329

    Article  PubMed  CAS  Google Scholar 

  • Won MH, Kang T, Park S, Jeon G, Kim Y, Seo JH, Choi E, Chung M, Cho SS (2001) The alterations of N-Methyl-D-aspartate receptor expressions and oxidative DNA damage in the CA1 area at the early time after ischemia-reperfusion insult. Neurosci Lett 301:139–142

    Article  PubMed  CAS  Google Scholar 

  • **ong Y, Gu Q, Peterson PL, Muizelaar JP, Lee CP (1997) Mitochondrial dysfunction and calcium perturbation induced by traumatic brain injury. J Neurotrauma 14:23–34

    Article  PubMed  CAS  Google Scholar 

  • **ong Y, Mahmood A, Lu D, Qu C, Kazmi H, Goussev A, Zhang ZG, Noguchi CT, Schallert T, Chopp M (2008) Histological and functional outcomes after traumatic brain injury in mice null for the erythropoietin receptor in the central nervous system. Brain Res 1230:247–257

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Jia Y, Guo Y, Chang G, Duan W, Sun M, Li B, Li C (2010) Epigallocatechin-3-gallate protects motor neurons and regulates glutamate level. FEBS Lett 584:2921–2925

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research (23500629 and 24501009) and a 2012 research grant of the Kao Research Council for the Study of Healthcare Science. The authors thank Mari Yachi for technical assistance.

Conflict of interest

The authors declare they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuki Itoh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Itoh, T., Tabuchi, M., Mizuguchi, N. et al. Neuroprotective effect of (–)-epigallocatechin-3-gallate in rats when administered pre- or post-traumatic brain injury. J Neural Transm 120, 767–783 (2013). https://doi.org/10.1007/s00702-012-0918-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-012-0918-4

Keywords

Navigation