Log in

The superconvergence of composite Newton–Cotes rules for Hadamard finite-part integral on a circle

  • Published:
Computing Aims and scope Submit manuscript

Abstract

We study the general (composite) Newton–Cotes rules for the computation of Hadamard finite-part integral on a circle with the hypersingular kernel \({\sin^{-2}\frac{x-s}2 }\) and focus on their pointwise superconvergence phenomenon, i.e., when the singular point coincides with some a priori known point, the convergence rate is higher than what is globally possible. We show that the superconvergence rate of the (composite) Newton–Cotes rules occurs at the zeros of a special function \({\Phi_k(\tau)}\) and prove the existence of the superconvergence points. The relation between \({\Phi_k(\tau)}\) and \({\mathcal{S}_k(\tau)}\) defined in Wu and Sun (Numer Math 109:143–165, 2008) is established, and the efficient calculation of Cotes coefficients is also discussed. Several numerical examples are provided to validate the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews GE, Askey R, Roy R (1999) Special functions. Cambridge University Press, London

    MATH  Google Scholar 

  2. Choi UJ, Kim SW, Yun BI (2004) Improvement of the asymptotic behaviour of the Euler-Maclaurin formula for Cauchy principal value and Hadamard finite-part integrals. Inter J Numer Meth Eng 61: 496–513

    Article  MATH  MathSciNet  Google Scholar 

  3. Cvijovic D (2008) Closed-form evaluation of some families of cotangent and cosecant integrals. Integr Transf Spec Func 19: 147–155

    Article  MATH  MathSciNet  Google Scholar 

  4. Du QK (2001) Evaluations of certain hypersingular integrals on interval. Inter J Numer Meth Eng 51: 1195–1210

    Article  MATH  Google Scholar 

  5. Du QK, Yu DH (2002) A domain decomposition method based on natural boundary reduction for nonlinear timedependent exterior wave problems. Computing 68: 111–129

    Article  MATH  MathSciNet  Google Scholar 

  6. Du QK, Yu DH (2003) Dirichlet-Neumann alternating algorithm based on the natural boundary reduction for the time-dependent problems over an unbounded domain. Appl Numer Math 44: 471–486

    Article  MATH  MathSciNet  Google Scholar 

  7. Elliott D (1998) The Euler-Maclaurin formula revisited. J Austral Math Soc B 40: 27–76

    Google Scholar 

  8. Elliott D, Venturino E (1997) Sigmoidal transformations and the Euler-Maclaurin expansion for evaluating certain Hadamard finite-part integrals. Numer Math 77: 453–465

    Article  MATH  MathSciNet  Google Scholar 

  9. Hasegawa T (2004) Uniform approximations to finite Hilbert transform and its derivative. J Comput Appl Math 163: 127–138

    Article  MATH  MathSciNet  Google Scholar 

  10. Hui CY, Shia D (1999) Evaluations of hypersingular integrals using Gaussian quadrature. Int J Numer Meth Eng 44: 205–214

    Article  MATH  MathSciNet  Google Scholar 

  11. Kim P, ** UC (2003) Two trigonometric quadrature formulae for evaluating hypersingular integrals. Inter J Numer Meth Eng 6: 469–486

    Article  Google Scholar 

  12. Koyama D (2007) Error estimates of the DtN finite element method for the exterior Helmholtz problem. J Comput Appl Math 200: 21–31

    Article  MATH  MathSciNet  Google Scholar 

  13. Kress R (1995) On the numerical solution of a hypersingular integral equation in scattering theory. J Comput Appl Math 61: 345–360

    Article  MATH  MathSciNet  Google Scholar 

  14. Li RX (1999) On the coupling of BEM and FEM for exterior problems for the Helmholtz equation. Math Comput 68: 945–953

    Article  MATH  Google Scholar 

  15. Linz P (1985) On the approximate computation of certain strongly singular integrals. Computing 35: 345–353

    Article  MATH  MathSciNet  Google Scholar 

  16. Monegato G (1999) Numerical integration schemes for the BEM solution of hypersingular integral equations. Int J Numer Meth Eng 45: 1807–1830

    Article  MATH  MathSciNet  Google Scholar 

  17. Nicholls DP, Nigam N (2006) Error analysis of an enhanced DtN-FE method for exterior scattering problems. Numer Math 105: 267–298

    Article  MATH  MathSciNet  Google Scholar 

  18. Paget DF (1981) The numerical evaluation of Hadamard finite-part integrals. Numer Math 36: 447–453

    Article  MATH  MathSciNet  Google Scholar 

  19. Shen YJ, Lin W (2004) The natural integral equations of plane elasticity problem and its wavelet methods. Appl Math Comput 150: 417–438

    Article  MATH  MathSciNet  Google Scholar 

  20. Sun WW, Wu JM (2005) Newton–Cotes formulae for the numerical evaluation of certain hypersingular integral. Computing 5: 297–309

    Article  MathSciNet  Google Scholar 

  21. Sun WW, Wu JM (2008) Interpolatory quadrature rules for Hadamard finite-part integrals and their superconvergence. IMA J Numer Anal 28: 580–597

    Article  MATH  MathSciNet  Google Scholar 

  22. Tsamasphyros G, Dimou G (1990) Gauss quadrature rules for finite part integrals. Int J Numer Meth Eng 30: 13–26

    Article  MATH  MathSciNet  Google Scholar 

  23. Weisstein Eric W, Clausen function. From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/ClausenFunction.html

  24. Wu JM, Lü Y (2005) A superconvergence result for the second-order Newton–Cotes formula for certain finite-part integrals. IMA J Numer Anal 25: 253–263

    Article  MATH  MathSciNet  Google Scholar 

  25. Wu JM, Sun WW (2005) The superconvergence of the composite trapezoidal rule for Hadamard finite part integrals. Numer Math 102: 343–363

    Article  MATH  MathSciNet  Google Scholar 

  26. Wu JM, Sun WW (2008) The superconvergence of Newton–Cotes rules for the Hadamard finite-part integral on an interval. Numer Math 109: 143–165

    Article  MATH  MathSciNet  Google Scholar 

  27. Wu ZP, Kang T, Yu DH (2004) On the coupled NBEM and FEM for a class of nonlinear exterior Dirichlet problem in R 2. Sci China Ser A 47: 181–189

    Article  MATH  MathSciNet  Google Scholar 

  28. Yu DH (1993) The numerical computation of hypersingular integrals and its application in BEM. Adv Eng Softw 18: 103–109

    Article  MATH  Google Scholar 

  29. Yu DH (2002) Natural boundary integrals method and its applications. Kluwer, Dordrecht

    Google Scholar 

  30. Yu DH, Wu JM (2001) A nonoverlap** domain decomposition method for exterior 3-D problem. J Comput Math 19: 77–86

    MATH  MathSciNet  Google Scholar 

  31. Zhang XP, Wu JM, Yu DH, The Superconvergence of composite trapezoidal rule for Hadamard finite-part integral on a circle and its application. Inter J Comput Math. doi:10.1080/00207160802226517

  32. Zhang XP, Wu JM, Yu DH (2009) Superconvergence of the composite Simpson’s rule for a certain finite-part integral and its applications. J Comput Appl Math 223: 598–613

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ** Zhang.

Additional information

Communicated by W. Hackbusch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Wu, J. & Yu, D. The superconvergence of composite Newton–Cotes rules for Hadamard finite-part integral on a circle. Computing 85, 219–244 (2009). https://doi.org/10.1007/s00607-009-0048-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-009-0048-5

Keywords

Mathematics Subject Classification (2000)

Navigation