Log in

“French fries”-like luminescent metal organic frameworks for the fluorescence determination of cytochrome c released by apoptotic cells and screening of anticancer drug activity

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A luminescent metal organic framework was prepared by encapsulating Zn–Ag–In–S quantum dots into “French fries”-like MIL-68(In) metal organic frameworks (ZAISQDs@MIL-68(In)). The ZAISQDs@MIL-68(In) had a maximum excitation wavelength at 370 nm and maximum emission wavelength at 620 nm. It was found that the ZAISQDs@MIL-68(In) was efficiently quenched by cytochrome c (Cyt c), which is an important biomarker of early cell apoptosis. The quenching mechanism was ascribed to be an inner filter effect and dynamic quenching of Cyt c towards the ZAISQDs@MIL-68(In), and the enrichment effect of MIL-68(In). Benefiting from the multiple advantages, ZAISQDs@MIL-68(In) was developed as an assay strategy of Cyt c with logarithmic relation between signal quenching and concentration in the range 0.02 to 3.5 μM. The linear equation was (F0–F)/F0 = 0.5043 + 0.2678 × logcCyt c with a detection limit of 8 nM. Cyt c released by drug induced apoptotic cells was determined by ZAISQDs@MIL-68(In), and this strategy has been utilized for the screening of anticancer drug activity.

Schematic representation of the synthesis of ZAISQDs@MIL-68(In) and its application for Cyt c and screening anticancer drug activity

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Crouser ED, Gadd ME, Julian MW, Broekemeier KM, Robbins KA, Pfeiffer DR (2003) Quantitation of cytochrome c release from rat liver mitochondria. Anal Biochem 317(1):67–75

    Article  CAS  PubMed  Google Scholar 

  2. Gu ZT, Wang H, Li L, Liu YS, Deng XB, Huo SF, Yuan FF, Liu ZF, Tong HS, Su L (2014) Heat stress induces apoptosis through transcription-independent p53-mediated mitochondrial pathways in human umbilial vein endothelial cell. Sci Rep-Uk 4(3):4469

    CAS  Google Scholar 

  3. Jamsheed J, Rashid M, Julka PK, Ray PC, Alpana S (2015) Extracellular cytochrome c as a biomarker for monitoring therapeutic efficacy and prognosis of non-small cell lung cancer patients. Tumour Biol 36(6):4253–4260

    Article  CAS  Google Scholar 

  4. Li X, Su B, Liu R, Wu D, He D (2011) Tetrandrine induces apoptosis and triggers caspase cascade in human bladder cancer cells. J Surg Res 166(1):e45–e51

    Article  CAS  PubMed  Google Scholar 

  5. Peng QX, Cai HB, Peng JL, Yung KL, Shi J, Mo ZX (2015) Extract of Zuo** pill ([characters: see text]) induces apoptosis of SGC-7901 cells via mitochondria-dependent pathway. Chin J Integr Med 21(11):837–845

    Article  PubMed  Google Scholar 

  6. Amin RM, Elfeky SA, Verwanger T, Krammer B (2017) Fluorescense-based CdTe nanosensor for sensitive detection of cytochrome C. Biosens Bioelectron 98:415–420

    Article  CAS  PubMed  Google Scholar 

  7. Cai M, Ding C, Cao X, Wang F, Zhang C, **an Y (2019) Label-free fluorometric assay for cytochrome c in apoptotic cells based on near infrared Ag2S quantum dots. Anal Chim Acta 1056:153–160

    Article  CAS  PubMed  Google Scholar 

  8. Dengbai L, **xiang H (2009) Determination of cytochrome c and other heme proteins using the reduction wave of mercury protoporphyrin IX groups generated by a hydroxylamine induced replacement reaction. Anal Chem 81(5):2032–2036

    Article  CAS  Google Scholar 

  9. Hu Y, He Y, Han Y, Ge Y, Song G, Zhou J (2018) Poly(styrene-4-sulfonate)-protected copper nanoclusters as a fluorometric probe for sequential detection of cytochrome c and trypsin. Microchim Acta 185(8):383

    Article  CAS  Google Scholar 

  10. Ma L, Liu F, Lei Z, Wang Z (2017) A novel upconversion@polydopamine core@shell nanopartcle based aptameric biosensor for biosensing and imaging of cytochrome c inside living cells. Biosens Bioelectron 87:638–645

  11. Ng H, Smith DJ, Nagley P (2012) Application of flow cytometry to determine differential redistribution of cytochrome c and Smac/DIABLO from mitochondria during cell death signaling. PLoS One 7(7):e42298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Qin Y, Daniyal M, Wang W, Jian Y, Yang W, Qiu Y, Tong C, Wang W, Liu B (2019) An enhanced silver nanocluster system for cytochrome c detection and natural drug screening targeted for cytochrome c. Sensors Actuators B Chem 291:485–492

    Article  CAS  Google Scholar 

  13. Zhang H, Zhang B, Di C, Ali MC, Chen J, Li Z, Si J, Zhang H, Qiu H (2018) Label-free fluorescence imaging of cytochrome c in living body and anti-cancer drugs screening with nitrogen doped carbon quantum dots. Nanoscale 10:5342–5349

    Article  CAS  PubMed  Google Scholar 

  14. Zhang XM, Qin YP, Ye HL, Ma XT, He XW, Li WY, Zhang YK (2018) Silicon nanoparticles coated with an epitope-imprinted polymer for fluorometric determination of cytochrome c. Microchim Acta 185(3):173

    Article  CAS  Google Scholar 

  15. Salehnia F, Hosseini M, Ganjali MR (2017) A fluorometric aptamer based assay for cytochrome c using fluorescent graphitic carbon nitride nanosheets. Microchim Acta 184(7):1–7

    Article  CAS  Google Scholar 

  16. Wang HB, Li Y, Bai HY, Liu YM (2017) DNA-templated Au nanoclusters and MnO2 sheets : a label free and universal fluorescence biosensing platform. Sensors Actuators B Chem 259:204–210

    Article  CAS  Google Scholar 

  17. Wang HB, Chen Y, Li N, Liu YM (2017) A fluorescent glucose bioassay based on the hydrogen peroxide-induced decomposition of a quencher system composed of MnO2 nanosheets and copper nanoclusters. Microchim Acta 184(2):515–523

    Article  CAS  Google Scholar 

  18. Wang HB, Li Y, Chen Y, Zhang ZP, Gan T, Liu YM (2018) Determination of the activity of alkaline phosphatase by using nanoclusters composed of flower-like cobalt oxyhydroxide and copper nanoclusters as fluorescent probes. Microchim Acta 185(2):102

    Article  CAS  Google Scholar 

  19. Shamsipur M, Molaabasi F, Hosseinkhani S, Rahmati F (2016) Rapid detection of early stage apoptotic cells based on label-free cytochrome c assay using bioconjugated metal nanoclusters as fluorescent probe. Anal Chem 88(4):2188–2197

    Article  CAS  PubMed  Google Scholar 

  20. Tang J, Huang C, Shu J, Zheng J, Ma D, Li J, Yang R (2018) Azoreductase and target simultaneously activated fluorescent monitoring for cytochrome c release under hypoxia. Anal Chem 90(9):8b–554b

    Google Scholar 

  21. Ting-Ting C, Xue T, Chen-Liwei L, Jia G, **a C, Yingfu L (2015) Fluorescence activation imaging of cytochrome c released from mitochondria using aptameric nanosensor. J Am Chem Soc 137(2):982

    Article  CAS  Google Scholar 

  22. Chen H, Wang J, Shan D, Chen J, Zhang S, Lu X (2018) Dual-emitting fluorescent metal-organic framework nanocomposites as a broad-range pH sensor for fluorescence imaging. Anal Chem 90(11):7056–7063

    Article  CAS  PubMed  Google Scholar 

  23. Deepak K, Kowsalya V, Akash D, Ki-Hyun K (2018) Recent progress in biological and chemical sensing by luminescent metal-organic frameworks. Sensors Actuators B Chem 273:1346–1370

    Article  CAS  Google Scholar 

  24. Cao Y, Wang L, Wang C, Su D, Liu Y, Hu X (2019) Photoelectrochemical determination of malathion by using CuO modified with a metal-organic framework of type Cu-BTC. Microchim Acta 186:481

  25. Esmaeilzadeh M (2019) A composite prepared from a metal-organic framework of type MIL-101(Fe) and morin-modified magnetite nanoparticles for extraction and speciation of vanadium(IV) and vanadium(V). Microchim Acta 18(1):14

    Article  CAS  Google Scholar 

  26. Yu LQ, Wang LY, Su FH, Hao PY, Wang H, Lv YK (2018) A gate-opening controlled metal-organic framework for selective solid-phase microextraction of aldehydes from exhaled breath of lung cancer patients. Microchim Acta 185(6):307

    Article  CAS  Google Scholar 

  27. Pan Y, Pang Y, Shi Y, Zheng W, Long Y, Huang Y, Zheng H (2019) One-pot synthesis of a composite consisting of the enzyme ficin and a zinc (II)-2-methylimidazole metal organic framework with enhanced peroxidase activity for colorimetric detection for glucose. Microchim Acta 186(4):213

    Article  CAS  Google Scholar 

  28. Hasegawa Y, Kitagawa Y (2019) Luminescent lanthanide complexes, clusters, coordination polymers and metal-organic frameworks with temperature-sensing properties. J Mater Chem C 7:7494–7511

    Article  CAS  Google Scholar 

  29. Peng Z, Kaiyu H, Yitao H, Zhen Z, Mengze Y, Honghui W, Yan H, Zhou N, Shouzhuo Y (2015) Near-infrared dual-emission quantum dots-gold nanoclusters nanohybrid via co-template synthesis for ratiometric fluorescent detection and bioimaging of ascorbic acid in vitro and in vivo. Anal Chem 87(19):9998–10005

    Article  CAS  Google Scholar 

  30. Ji-Min Y, **ao-Wei H, Yi-Xuan L, Wei Z (2019) Fabrication of a carbon quantum dots-immobilized zirconium-based metal-organic framework composite fluorescence sensor for highly sensitive detection of 4-nitrophenol. Microporous Mesoporous Mater 274:149–154

    Article  CAS  Google Scholar 

  31. Jiang Z, Sun H, Shi W, Zhou T, Hu J, Cheng J, Hu P, Sun S (2019) Co3O4 nanocage derived from metal-organic frameworks: an excellent cathode catalyst for rechargeable Li-O2 battery. Nano Res 7:1555–1562

    Article  CAS  Google Scholar 

  32. **aomei L, Gongmin G, Liyan Z, Yuwu C, Guonan C (2014) Encapsulation of strongly fluorescent carbon quantum dots in metal-organic frameworks for enhancing chemical sensing. Anal Chem 86(2):1223–1228

    Article  CAS  Google Scholar 

  33. Lei B, Wang M, Jiang Z, Qi W, Su R, He Z (2018) Constructing redox-responsive metal-organic framework nanocarriers for anticancer drug delivery. ACS Appl Mater Interfaces 10(19):16698–16706

    Article  CAS  PubMed  Google Scholar 

  34. Lustig WP, Mukherjee S, Rudd ND, Desai AV, Li J, Ghosh SK (2017) Metal-organic frameworks: functional luminescent and photonic materials for sensing applications. Chem Soc Rev 46(11):3242–3285

    Article  CAS  PubMed  Google Scholar 

  35. ** LN, Qian XY, Wang JG, Aslan H, Dong M (2015) MIL-68 (In) nano-rods for the removal of Congo red dye from aqueous solution. J Colloid Interface Sci 453:270–275

    Article  CAS  PubMed  Google Scholar 

  36. Yang H, Wang B, Cheng J, Wang R, Zhang S, Dong S, Wei S, Wang P, Li JR (2019) Determination and removal of clenbuterol with a stable fluorescent zirconium (IV)-based metal organic framework. Microchim Acta 186(7):454

    Article  CAS  Google Scholar 

  37. Deng D, Qu L, Cheng Z, Achilefu S, Gu Y (2014) Highly luminescent water-soluble quaternary Zn–Ag–In–S quantum dots and their unique precursor S/In ratio-dependent spectral shifts. J Lumin 146(1):364–370

    Article  CAS  Google Scholar 

  38. Lakowicz ZR (2006) Principles of fluorescence spectroscopy. Springer, New York

    Book  Google Scholar 

  39. Hu G, Zhang J, Xu F, Deng H, Zhang W, Kang S, Liang W (2018) SLP-2 inhibits cisplatin induced apoptosis through MEK/ERK signaling and mitochondrial apoptosis pathway in cervical cancer cells. Cancer Sci 109(5):1357–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jiang J, Liang X, Zhou X, Huang L, Huang R, Chu Z, Zhan Q (2010) A meta-analysis of randomized controlled trials comparing Irinotecan/platinum with etoposide/platinum in patients with previously untreated extensive-stage small cell lung cancer. J Thorac Oncol 5(6):867–873

    Article  PubMed  Google Scholar 

  41. Lee YH, Tuyet PT (2019) Synthesis and biological evaluation of quercetin-zinc (II) complex for anti-cancer and anti-metastasis of human bladder cancer cells. In Vitro Cell Dev Biol Anim 5S(Suppl):1–10

    Google Scholar 

  42. Qi-Yan Z, Yu H, Lin-Jie Z, Min H, Yong-Qi H, Qi-Fang Z (2014) Sensitization of cervical carcinoma cells to paclitaxel by an IPP5 active mutant. Asian Pac J Cancer Prev 15(19):8337–8343

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Natural Science Foundation of China (No. 21705050), Pearl River S&T Nova Program of Guangzhou (201806010170).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia Tao or Peng Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 545 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**e, R., Liu, Y., Yang, P. et al. “French fries”-like luminescent metal organic frameworks for the fluorescence determination of cytochrome c released by apoptotic cells and screening of anticancer drug activity. Microchim Acta 187, 221 (2020). https://doi.org/10.1007/s00604-020-4207-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-4207-x

Keywords

Navigation