Log in

Cu2+-modified hollow carbon nanospheres: an unusual nanozyme with enhanced peroxidase-like activity

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A Cu2+-modified carboxylated hollow carbon nanospheres (Cu2+-HCNSs-COOH) was designed with enhanced peroxidase-like activity for the detection of hydrogen peroxide (H2O2) and degradation of methylene blue (MB). Hollow polymer nanospheres were fabricated from aniline, pyrrole, Triton-100, and ammonium persulfate via confined interfacial copolymerization reaction, which can be pyrolyzed to create HCNSs with the hollow gap diameter of about 20 nm under high temperature. Combining the synergistic effect of coordination and electrostatic interaction, Cu2+-HCNSs-COOH was constructed by anchoring Cu2+ on the surface of HCNSs-COOH. Furthermore, Cu2+-HCNSs-COOH has higher affinity for 3,3′,5,5′-tetramethylbenzidine and H2O2 of 0.20 mM and 0.88 mM, respectively. Based on the rapid response of Cu2+-HCNSs-COOH to H2O2, we constructed a colorimetric sensing platform by detecting the absorbance of the 3,3′,5,5′-tetramethylbenzidine-H2O2 system at 652 nm for quantifying H2O2, which holds good linear relationship between 1 and 150 μM and has a detection limit of 0.61 μM. We also investigated the degradation of MB in the presence of Cu2+-HCNSs-COOH and H2O2, which can degrade 80.7% pollutants within 30 min. This research developed an unusual nanozyme for bioassays and water pollution treatment, which broadened the way for the rapid development of clinical diagnostics and water pollution treatment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42:6060–6093

    Article  CAS  Google Scholar 

  2. Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H (2019) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 48:1004–1076

    Article  CAS  Google Scholar 

  3. Wang X, Hua Y, Wei H (2016) Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorg Chem Front 3:41–60

    Article  CAS  Google Scholar 

  4. Huang Y, Ren J, Qu X (2019) Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev 119:4357–4412

    Article  CAS  Google Scholar 

  5. Wang H, Wan K, Shi X (2018) Recent advances in nanozyme research. Adv Mater 1805368

  6. Zhou Y, Liu B, Yang R, Liu J (2017) Filling in the gaps between nanozymes and enzymes: challenges and opportunities. Bioconjug Chem 28:2903–2909

    Article  CAS  Google Scholar 

  7. Wen W, Yan X, Zhu C, Du D, Lin Y (2017) Recent advances in electrochemical immunosensors. Anal Chem 89:138–156

    Article  CAS  Google Scholar 

  8. Wang Q, Wei H, Zhang Z, Wang E, Dong S (2018) Nanozyme: an emerging alternative to natural enzyme for biosensing and immunoassay. Trends Anal Chem 105:218–224

    Article  CAS  Google Scholar 

  9. Chikkaveeraiah B, Bhirde A, Morgan N, Eden H, Chen X (2012) Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano 6:6546–6561

    Article  CAS  Google Scholar 

  10. Rica R, Stevens M (2012) Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat Nanotechnol 7:821–824

    Article  Google Scholar 

  11. Zhang H, Liang X, Han L, Li F (2018) “Non-naked” gold with glucose oxidase-like activity: a nanozyme for tandem catalysis. Small 14(44):1803256

  12. Zhao Y, Yang M, Fu Q, Ouyang H, Wen W, Song Y, Zhu C, Lin Y, Du D (2018) A Nanozyme- and ambient light-based smartphone platform for simultaneous detection of dual biomarkers from exposure to organophosphorus pesticides. Anal Chem 90:7391–7398

    Article  CAS  Google Scholar 

  13. Zeng R, Luo Z, Zhang L, Tang D (2018) Platinum Nanozyme-catalyzed gas generation for pressure-based bioassay using polyaniline nanowires-functionalized graphene oxide framework. Anal Chem 90:12299–12306

    Article  CAS  Google Scholar 

  14. Chauhan S, Hosseinzadeh P, Lu Y, Blackburn N (2016) Stopped-flow studies of the reduction of the copper centers suggest a bifurcated Electron transfer pathway in peptidylglycine monooxygenase. Biochemistry 55:2008–2021

    Article  CAS  Google Scholar 

  15. Bhagi-Damodaran A, Michael M, Zhu Q, Reed J, Sandovall B, Mirts E, Chakraborty S, Moënne-Loccoz P, Zhang Y, Lu Y (2017) Why copper is preferred over iron for oxygen activation and reduction in haem-copper oxidases. Nat Chem 9:257–263

    Article  CAS  Google Scholar 

  16. Clark K, Tian S, Donk W, Lu Y (2017) Probing the role of the backbone carbonyl interaction with the CuA center in azurin by replacing the peptide bond with an ester linkage. Chem Commun 53:224–227

    Article  CAS  Google Scholar 

  17. Yang N, Waldvogel S, Jiang X (2016) Electrochemistry of carbon dioxide on carbon electrodes. ACS Appl Mater Interfaces 8:28357–28371

    Article  CAS  Google Scholar 

  18. Du Y, Guo S (2016) Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications. Nanoscale 8:2532–2543

    Article  CAS  Google Scholar 

  19. Sun H, Zhou Y, Ren J, Qu X (2018) Carbon Nanozymes: enzymatic properties, catalytic mechanism, and applications. Angew Chem Int Ed 57:9224–9237

    Article  CAS  Google Scholar 

  20. Garg B, Bisht T (2016) Carbon Nanodots as peroxidase nanozymes for biosensing. Molecules 21:1653

    Article  CAS  Google Scholar 

  21. Ren H, Zhang Y, Liu L, Li Y, Wang D, Zhang R, Zhang W, Li Y, Ye B (2019) Synthesis of hollow Mo2C/carbon spheres, and their application to simultaneous electrochemical detection of hydroquinone, catechol, and resorcinol. Microchim Acta 186:306

    Article  Google Scholar 

  22. Zhao Y, **e H, Zhao M, Li H, Chen X, Cai Z, Song H (2019) Core-shell hollow spheres of type C@MoS2 for use in surface-assisted laser desorption/ionization time of flight mass spectrometry of small molecules. Microchim Acta 186:830

    Article  CAS  Google Scholar 

  23. Zhang L, Yang X, Li Y, Zheng W, Jiang X (2017) Hollow carbon nanospheres as a versatile platform for co-delivery of siRNA and chemotherapeutics. Carbon 121:79–89

    Article  CAS  Google Scholar 

  24. Yang X, Li Y, Zhang P, Sun L, Ren X, Mi H (2020) Hierarchical hollow carbon spheres: novel synthesis strategy, pore structure engineering and application for micro-supercapacitor. Carbon 157:70–79

    Article  CAS  Google Scholar 

  25. Fan K, ** J, Fan L, Wang P, Zhu C, Tang Y, Xu X, Liang M, Jiang B, Yan X, Gao L (2018) In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat Commun 9:1440

    Article  Google Scholar 

  26. Sang Y, Huang Y, Li W, Ren J, Qu X (2018) Bioinspired design of Fe3+-doped mesoporous carbon nanospheres for enhanced nanozyme activity. Chem Eur J 24:7259–7263

    Article  CAS  Google Scholar 

  27. Zhu J, Nie W, Wang Q, Li J, Li H, Wen W, Bao T, **ong H, Zhang X, Wang S (2018) In situ growth of copper oxide-graphite carbon nitride nanocomposites with peroxidase-mimicking activity for electrocatalytic and colorimetric detection of hydrogen peroxide. Carbon 129:29–37

    Article  CAS  Google Scholar 

  28. Zhu J, Peng X, Nie W, Wang Y, Gao J, Wen W, Selvaraj J, Zhang X, Wang S (2019) Hollow copper sulfide nanocubes as multifunctional nanozymes for colorimetric detection of dopamine and electrochemical detection of glucose. Biosens Bioelectron 141:111450

    Article  CAS  Google Scholar 

  29. Xu F, Tang Z, Huang S, Chen L, Liang Y, Mai W, Zhong H, Fu R, Wu D (2015) Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage. Nat Commun 6:7221

    Article  Google Scholar 

  30. Zhou C, Han J, Song G, Guo R (2008) Fabrication of poly(aniline-co-pyrrole) hollow nanospheres with triton X-100 micelles as templates. J Polym Sci Pol Chem 46:3563–3572

    Article  CAS  Google Scholar 

  31. Stejskal J, Sapurina I (2004) On the origin of colloidal particles in the dispersion polymerization of aniline. J Colloid Interface Sci 274:489–495

    Article  CAS  Google Scholar 

  32. Stejskal J, Spirkova M, Riede A, Helmstedt M, Mokreva P, Prokes J (1999) Polyaniline dispersions 8. The control of particle morphology. Polymer 40:2487–2492

    Article  CAS  Google Scholar 

  33. Zeng S, Yao Y, Huang L, Wu H, Peng B, Zhang Q, Li X, Yu L, Liu S, Tu W, Lan T, Zeng X, Zou J (2018) Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres and their application in lithium-sulfur batteries. Chem Eur J 24:1988–1997

    Article  CAS  Google Scholar 

  34. Wang S, Cazelles R, Liao W, Vázquez-González M, Zoabi A, Abu-Reziq R, Willner I (2017) Mimicking horseradish peroxidase and NADH peroxidase by heterogeneous Cu2+-modified graphene oxide nanoparticles. Nano Lett 17:2043–2048

    Article  CAS  Google Scholar 

  35. Vázquez-González M, Liao W, Cazelles R, Wang S, Yu X, Gutkin V, Willner I (2017) Mimicking horseradish peroxidase functions using Cu2+-modified carbon nitride nanoparticles or Cu2+-modified carbon dots as heterogeneous catalysts. ACS Nano 11:3247–3253

    Article  Google Scholar 

  36. Chen W, Vázquez-González M, Kozell A, Cecconello A, Willner I (2018) Cu2+-modified metal-organic framework nanoparticles: a peroxidase-mimicking nanoenzyme. Small 14:1703149

    Article  Google Scholar 

  37. **ong Y, Qin Y, Su L, Ye F (2017) Bioinspired synthesis of Cu2+-modified covalent triazine framework: a new highly efficient and promising peroxidase mimic. Chem Eur J 23:11037–11045

    Article  CAS  Google Scholar 

  38. Ju E, Dong K, Chen Z, Liu Z, Liu C, Huang Y, Wang Z, Pu F, Ren J, Qu X (2016) Copper(II)–graphitic carbon nitride triggered synergy: improved ROS generation and reduced glutathione levels for enhanced photodynamic therapy. Angew Chem Int Ed 55:11467–11471

    Article  CAS  Google Scholar 

Download references

Funding

This work was partly financially supported by the National Natural Science Foundation of China (Nos. 21775033, 22076041) and the Open Project Funding of the State Key Laboratory of Biocatalysis and Enzyme Engineering (SKLBEE2019016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wen or Shengfu Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 10089 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Luo, G., **, X. et al. Cu2+-modified hollow carbon nanospheres: an unusual nanozyme with enhanced peroxidase-like activity. Microchim Acta 188, 8 (2021). https://doi.org/10.1007/s00604-020-04690-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04690-0

Keywords

Navigation