Log in

Lateral flow biosensors based on the use of micro- and nanomaterials: a review on recent developments

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This review (with 187 refs.) summarizes the progress that has been made in the design of lateral flow biosensors (LFBs) based on the use of micro- and nano-materials. Following a short introduction into the field, a first section covers features related to the design of LFBs, with subsections on strip-based, cotton thread-based and vertical flow- and syringe-based LFBs. The next chapter summarizes methods for sample pretreatment, from simple method to membrane-based methods, pretreatment by magnetic methods to device-integrated sample preparation. Advances in flow control are treated next, with subsections on cross-flow strategies, delayed and controlled release and various other strategies. Detection conditionst and mathematical modelling are briefly introduced in the following chapter. A further chapter covers methods for reliability improvement, for example by adding other validation lines or adopting different detection methods. Signal readouts are summarized next, with subsections on color-based, luminescent, smartphone-based and SERS-based methods. A concluding section summarizes the current status and addresses challenges in future perspectives.

Recent development and breakthrough points of lateral flow biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Glad C, Grubb A (1981) Immunocapillarymigration with enzyme labeled antibodies: rapid quantification of C-reactive protein in human plasma. Anal Biochem 116(2):6. https://doi.org/10.1016/0003-2697(81)90367-5

    Article  Google Scholar 

  2. Glynou K, Ioannou PC, Christopoulos TK, Syriopoulou V (2003) Oligonucleotide-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for DNA analysis by hybridization. Anal Chem 75(16):4155–4160. https://doi.org/10.1021/ac034256+

    Article  CAS  PubMed  Google Scholar 

  3. Xu Y, Liu M, Kong N, Liu J (2016) Lab-on-paper micro- and nano-analytical devices: fabrication, modification, detection and emerging applications. Microchim Acta 183(5):1521–1542. https://doi.org/10.1007/s00604-016-1841-4

    Article  CAS  Google Scholar 

  4. Quesada-González D, Merkoçi A (2015) Nanoparticle-based lateral flow biosensors. Biosens Bioelectron 73:47–63. https://doi.org/10.1016/j.bios.2015.05.050

    Article  CAS  PubMed  Google Scholar 

  5. Huang X, Aguilar ZP, Xu H, Lai W, **ong Y (2016) Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: a review. Biosens Bioelectron 75:166–180. https://doi.org/10.1016/j.bios.2015.08.032

    Article  CAS  PubMed  Google Scholar 

  6. Hu J, Wang S, Wang L, Li F, **guan-Murphy B, Lu TJ, Xu F (2014) Advances in paper-based point-of-care diagnostics. Biosens Bioelectron 54:585–597. https://doi.org/10.1016/j.bios.2013.10.075

    Article  CAS  PubMed  Google Scholar 

  7. Li J, Macdonald J (2016) Multiplexed lateral flow biosensors: technological advances for radically improving point-of-care diagnoses. Biosens Bioelectron 83:177–192. https://doi.org/10.1016/j.bios.2016.04.021

    Article  CAS  PubMed  Google Scholar 

  8. Ge X, Asiri AM, Du D, Wen W, Wang S, Lin Y (2014) Nanomaterial-enhanced paper-based biosensors. TrAC-Trend Anal Chem 58:31–39. https://doi.org/10.1016/j.trac.2014.03.008

    Article  CAS  Google Scholar 

  9. John A, Price CP (2014) Existing and emerging Technologies for Point-of-Care Testing. Clin Biochem Rev 35(3):13

    Google Scholar 

  10. Gao X, Xu L-P, Zhou S-F, Liu G, Zhang X (2014) Recent Advances in Nanoparticles-based Lateral Flow Biosensors. Am J Biomed Sci 6: 41–57. https://doi.org/10.5099/aj140100041

  11. Bamrungsap S, Apiwat C, Chantima W, Dharakul T, Wiriyachaiporn N (2013) Rapid and sensitive lateral flow immunoassay for influenza antigen using fluorescently-doped silica nanoparticles. Microchim Acta 181(1–2):223–230. https://doi.org/10.1007/s00604-013-1106-4

    Article  CAS  Google Scholar 

  12. Drygin YF, Blintsov AN, Grigorenko VG, Andreeva IP, Osipov AP, Varitzev YA, Uskov AI, Kravchenko DV, Atabekov JG (2012) Highly sensitive field test lateral flow immunodiagnostics of PVX infection. Appl Microbiol Biot 93(1):179–189. https://doi.org/10.1007/s00253-011-3522-x

    Article  CAS  Google Scholar 

  13. Hou SY, Hsiao YL, Lin MS, Yen CC, Chang CS (2012) MicroRNA detection using lateral flow nucleic acid strips with gold nanoparticles. Talanta 99:375–379. https://doi.org/10.1016/j.talanta.2012.05.067

    Article  CAS  PubMed  Google Scholar 

  14. ** W, Yamada K, Ikami M, Kaji N, Tokeshi M, Atsumi Y, Mizutani M, Murai A, Okamoto A, Namikawa T, Baba Y, Ohta M (2013) Application of IgY to sandwich enzyme-linked immunosorbent assays, lateral flow devices, and immunopillar chips for detecting staphylococcal enterotoxins in milk and dairy products. J Microbiol Meth 92(3):323–331. https://doi.org/10.1016/j.mimet.2013.01.001

    Article  CAS  Google Scholar 

  15. Parolo C, de la Escosura-Muniz A, Merkoci A (2013) Enhanced lateral flow immunoassay using gold nanoparticles loaded with enzymes. Biosens Bioelectron 40(1):412–416. https://doi.org/10.1016/j.bios.2012.06.049

    Article  CAS  PubMed  Google Scholar 

  16. Pohlmann C, Dieser I, Sprinzl M (2014) A lateral flow assay for identification of Escherichia coli by ribosomal RNA hybridisation. Analyst 139(5):1063–1071. https://doi.org/10.1039/c3an02059b

    Article  CAS  PubMed  Google Scholar 

  17. **ang T, Jiang Z, Zheng J, Lo C, Tsou H, Ren G, Zhang J, Huang A, Lai G (2012) A novel double antibody sandwich-lateral flow immunoassay for the rapid and simple detection of hepatitis C virus. Int J Mol Med 30(5):1041–1047. https://doi.org/10.3892/ijmm.2012.1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhu J, Zou N, Zhu D, Wang J, ** Q, Zhao J, Mao H (2011) Simultaneous detection of high-sensitivity cardiac troponin I and myoglobin by modified sandwich lateral flow immunoassay: proof of principle. Clin Chem 57(12):1732–1738. https://doi.org/10.1373/clinchem.2011.171694

    Article  CAS  PubMed  Google Scholar 

  19. Fu X, Chu Y, Zhao K, Li J, Deng A (2017) Ultrasensitive detection of the β-adrenergic agonist brombuterol by a SERS-based lateral flow immunochromatographic assay using flower-like gold-silver core-shell nanoparticles. Microchim Acta 184(6):1711–1719. https://doi.org/10.1007/s00604-017-2178-3

    Article  CAS  Google Scholar 

  20. Liu J, Wang J, Li Z, Meng H, Zhang L, Wang H, Li J, Qu L (2018) A lateral flow assay for the determination of human tetanus antibody in whole blood by using gold nanoparticle labeled tetanus antigen. Microchim Acta 185(2):110. https://doi.org/10.1007/s00604-017-2657-6

    Article  CAS  Google Scholar 

  21. Wang W, Liu L, Song S, Xu L, Kuang H, Zhu J, Xu C (2016) Identification and quantification of eight listeria monocytogene serotypes from listeria spp. using a gold nanoparticle-based lateral flow assay. Microchim Acta 184(3):715–724. https://doi.org/10.1007/s00604-016-2028-8

    Article  CAS  Google Scholar 

  22. Tao Y, Yang J, Chen L, Huang Y, Qiu B, Guo L, Lin Z (2018) Dialysis assisted ligand exchange on gold nanorods: amplification of the performance of a lateral flow immunoassay for E. coli O157:H7. Microchim Acta 185(7):350. https://doi.org/10.1007/s00604-018-2897-0

    Article  CAS  Google Scholar 

  23. Wiriyachaiporn N, Sirikett H, Maneeprakorn W, Dharakul T (2017) Carbon nanotag based visual detection of influenza a virus by a lateral flow immunoassay. Microchim Acta 184(6):1827–1835. https://doi.org/10.1007/s00604-017-2191-6

    Article  CAS  Google Scholar 

  24. Urusov AE, Gubaidullina MK, Petrakova AV, Zherdev AV, Dzantiev BB (2017) A new kind of highly sensitive competitive lateral flow immunoassay displaying direct analyte-signal dependence. Application to the determination of the mycotoxin deoxynivalenol. Microchim Acta 185(1):29. https://doi.org/10.1007/s00604-017-2576-6

    Article  CAS  Google Scholar 

  25. Li SJ, Sheng W, Wen W, Gu Y, Wang JP, Wang S (2018) Three kinds of lateral flow immunochromatographic assays based on the use of nanoparticle labels for fluorometric determination of zearalenone. Microchim Acta 185(4):238. https://doi.org/10.1007/s00604-018-2778-6

    Article  CAS  Google Scholar 

  26. Wang Y, Wang L, Zhang C, Liu F (2019) A lateral flow assay for copper(II) utilizing catalytic and stem-loop based signal amplification. Microchim Acta 186(2):82. https://doi.org/10.1007/s00604-018-3197-4

    Article  CAS  Google Scholar 

  27. Zhong Y, Chen Y, Yao L, Zhao D, Zheng L, Liu G, Ye Y, Chen W (2016) Gold nanoparticles based lateral flow immunoassay with largely amplified sensitivity for rapid melamine screening. Microchim Acta 183(6):1989–1994. https://doi.org/10.1007/s00604-016-1812-9

    Article  CAS  Google Scholar 

  28. Mao X, Ma Y, Zhang A, Zhang L, Zeng L, Liu G (2009) Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip. Anal Chem 81(4):1660–1668. https://doi.org/10.1021/ac8024653

    Article  CAS  PubMed  Google Scholar 

  29. Li Z, Wang Y, Wang J, Tang Z, Pounds JG, Lin Y (2010) Rapid and sensitive detection of protein biomarker using a portable fluorescence biosensor based on quantum dots and a lateral flow test strip. Anal Chem 82(16):7008–7014. https://doi.org/10.1021/ac101405a

    Article  CAS  PubMed  Google Scholar 

  30. Wang DB, Tian B, Zhang ZP, Deng JY, Cui ZQ, Yang RF, Wang XY, Wei HP, Zhang XE (2013) Rapid detection of bacillus anthracis spores using a super-paramagnetic lateral-flow immunological detection system. Biosens Bioelectron 42:661–667. https://doi.org/10.1016/j.bios.2012.10.088

    Article  CAS  PubMed  Google Scholar 

  31. Li X, Tian J, Shen W (2010) Thread as a versatile material for low-cost microfluidic diagnostics. ACS Appl Mater Inter 2(1):1–6. https://doi.org/10.1021/am9006148

    Article  CAS  Google Scholar 

  32. Reches M, Mirica KA, Dasgupta R, Dickey MD, Butte MJ, Whitesides GM (2010) Thread as a matrix for biomedical assays. ACS Appl Mater Inter 2(6):1722–1728. https://doi.org/10.1021/am1002266

    Article  CAS  Google Scholar 

  33. Safavieh R, Zhou GZ, Juncker D (2011) Microfluidics made of yarns and knots: from fundamental properties to simple networks and operations. Lab Chip 11(15):2618–2624. https://doi.org/10.1039/c1lc20336c

    Article  CAS  PubMed  Google Scholar 

  34. Zhou G, Mao X, Juncker D (2012) Immunochromatographic assay on thread. Anal Chem 84(18):7736–7743. https://doi.org/10.1021/ac301082d

    Article  CAS  PubMed  Google Scholar 

  35. Mao X, Du TE, Wang Y, Meng L (2015) Disposable dry-reagent cotton thread-based point-of-care diagnosis devices for protein and nucleic acid test. Biosens Bioelectron 65:390–396. https://doi.org/10.1016/j.bios.2014.10.053

    Article  CAS  PubMed  Google Scholar 

  36. Mao X, Du TE, Meng L, Song T (2015) Novel gold nanoparticle trimer reporter probe combined with dry-reagent cotton thread immunoassay device for rapid human ferritin test. Anal Chim Acta 889:172–178. https://doi.org/10.1016/j.aca.2015.06.031

    Article  CAS  PubMed  Google Scholar 

  37. Meng LL, Song TT, Mao X (2017) Novel immunochromatographic assay on cotton thread based on carbon nanotubes reporter probe. Talanta 167:379–384. https://doi.org/10.1016/j.talanta.2017.02.023

    Article  CAS  PubMed  Google Scholar 

  38. Jia X, Song T, Liu Y, Meng L, Mao X (2017) An immunochromatographic assay for carcinoembryonic antigen on cotton thread using a composite of carbon nanotubes and gold nanoparticles as reporters. Anal Chim Acta 969:57–62. https://doi.org/10.1016/j.aca.2017.02.040

    Article  CAS  PubMed  Google Scholar 

  39. Wu T, Xu T, Xu LP, Huang Y, Shi W, Wen Y, Zhang X (2016) Superhydrophilic cotton thread with temperature-dependent pattern for sensitive nucleic acid detection. Biosens Bioelectron 86:951–957. https://doi.org/10.1016/j.bios.2016.07.041

    Article  CAS  PubMed  Google Scholar 

  40. Chen P, Gates-Hollingsworth M, Pandit S, Park A, Montgomery D, AuCoin D, Gu J, Zenhausern F (2019) Paper-based vertical flow immunoassay (VFI) for detection of bio-threat pathogens. Talanta 191:81–88. https://doi.org/10.1016/j.talanta.2018.08.043

    Article  CAS  PubMed  Google Scholar 

  41. Oh YK, Joung HA, Kim S, Kim MG (2013) Vertical flow immunoassay (VFA) biosensor for a rapid one-step immunoassay. Lab Chip 13(5):768–772. https://doi.org/10.1039/c2lc41016h

    Article  CAS  PubMed  Google Scholar 

  42. Eltzov E, Marks RS (2017) Colorimetric stack pad immunoassay for bacterial identification. Biosens Bioelectron 87:572–578. https://doi.org/10.1016/j.bios.2016.08.044

    Article  CAS  PubMed  Google Scholar 

  43. Clarke OJ, Goodall BL, Hui HP, Vats N, Brosseau CL (2017) Development of a SERS-Based rapid vertical flow assay for point-of-care diagnostics. Anal Chem 89(3):1405–1410. https://doi.org/10.1021/acs.analchem.6b04710

    Article  CAS  PubMed  Google Scholar 

  44. Nunes Pauli GE, de la Escosura-Muniz A, Parolo C, Helmuth Bechtold I, Merkoci A (2015) Lab-in-a-syringe using gold nanoparticles for rapid immunosensing of protein biomarkers. Lab Chip 15(2):399–405. https://doi.org/10.1039/c4lc01123f

    Article  CAS  PubMed  Google Scholar 

  45. Zor E, Bekar N (2017) Lab-in-a-syringe using gold nanoparticles for rapid colorimetric chiral discrimination of enantiomers. Biosens Bioelectron 91:211–216. https://doi.org/10.1016/j.bios.2016.12.031

    Article  CAS  PubMed  Google Scholar 

  46. Moumita M, Shankar KM, Abhiman PB, Shamasundar BA (2019) Development of a sandwich vertical flow immunogold assay for rapid detection of oxytetracycline residue in fish tissues. Food Chem 270:585–592. https://doi.org/10.1016/j.foodchem.2018.07.124

    Article  CAS  PubMed  Google Scholar 

  47. Bhardwaj J, Sharma A, Jang J (2019) Vertical flow-based paper immunosensor for rapid electrochemical and colorimetric detection of influenza virus using a different pore size sample pad. Biosens Bioelectron 126:36–43. https://doi.org/10.1016/j.bios.2018.10.008

    Article  CAS  PubMed  Google Scholar 

  48. Roda A, Zangheri M, Calabria D, Mirasoli M, Caliceti C, Quintavalla A, Lombardo M, Trombini C, Simoni P (2019) A simple smartphone-based thermochemiluminescent immunosensor for valproic acid detection using 1,2-dioxetane analogue-doped nanoparticles as a label. Sensor Actuat B-Chem 279:327–333. https://doi.org/10.1016/j.snb.2018.10.012

    Article  CAS  Google Scholar 

  49. Nybond S, Reu P, Rhedin S, Svedberg G, Alfven T, Gantelius J, Svahn HA (2019) Adenoviral detection by recombinase polymerase amplification and vertical flow paper microarray. Anal Bioanal Chem 411(4):813–822. https://doi.org/10.1007/s00216-018-1503-y

    Article  CAS  PubMed  Google Scholar 

  50. Joung HA, Ballard ZS, Ma A, Tseng DK, Teshome H, Burakowski S, Garner OB, Di Carlo D, Ozcan A (2019) Paper-based multiplexed vertical flow assay for point-of-care testing. Lab Chip 19(6):1027–1034. https://doi.org/10.1039/c9lc00011a

    Article  CAS  PubMed  Google Scholar 

  51. Wang KY, Bu SJ, Ju CJ, Han Y, Ma CY, Liu WS, Li ZY, Li CT, Wan JY (2019) Disposable syringe-based visual immunotest for pathogenic bacteria based on the catalase mimicking activity of platinum nanoparticle-concanavalin a hybrid nanoflowers. Microchim Acta 186(2):57. https://doi.org/10.1007/s00604-018-3133-7

    Article  CAS  Google Scholar 

  52. Henriksen K, O'Bryant SE, Hampel H, Trojanowski JQ, Montine TJ, Jeromin A, Blennow K, Lonneborg A, Wyss-Coray T, Soares H, Bazenet C, Sjogren M, Hu W, Lovestone S, Karsdal MA, Weiner MW, Blood-Based Biomarker Interest G (2014) The future of blood-based biomarkers for Alzheimer's disease. Alzheimers Dement 10(1):115–131. https://doi.org/10.1016/j.jalz.2013.01.013

    Article  PubMed  Google Scholar 

  53. Cheng YS, Rees T, Wright J (2014) A review of research on salivary biomarkers for oral cancer detection. Clin Trans Med 3(1):3. https://doi.org/10.1186/2001-1326-3-3

    Article  Google Scholar 

  54. Gonzalez JM, Foley MW, Bieber NM, Bourdelle PA, Niedbala RS (2011) Development of an ultrasensitive immunochromatography test to detect nicotine metabolites in oral fluids. Anal Bioanal Chem 400(10):3655–3664. https://doi.org/10.1007/s00216-011-5051-y

    Article  CAS  PubMed  Google Scholar 

  55. Lopez Marzo AM, Pons J, Blake DA, Merkoci A (2013) All-integrated and highly sensitive paper based device with sample treatment platform for Cd2+ immunodetection in drinking/tap waters. Anal Chem 85(7):3532–3538. https://doi.org/10.1021/ac3034536

    Article  CAS  PubMed  Google Scholar 

  56. Worsley GJ, Attree SL, Noble JE, Horgan AM (2012) Rapid duplex immunoassay for wound biomarkers at the point-of-care. Biosens Bioelectron 34(1):215–220. https://doi.org/10.1016/j.bios.2012.02.005

    Article  CAS  PubMed  Google Scholar 

  57. Rohrman B, Richards-Kortum R (2015) Inhibition of recombinase polymerase amplification by background DNA: a lateral flow-based method for enriching target DNA. Anal Chem 87(3):1963–1967. https://doi.org/10.1021/ac504365v

    Article  CAS  PubMed  Google Scholar 

  58. Tang R, Yang H, Choi JR, Gong Y, Hu J, Feng S, **guan-Murphy B, Mei Q, Xu F (2016) Improved sensitivity of lateral flow assay using paper-based sample concentration technique. Talanta 152:269–276. https://doi.org/10.1016/j.talanta.2016.02.017

    Article  CAS  PubMed  Google Scholar 

  59. Berger AG, Restaino SM, White IM (2017) Vertical-flow paper SERS system for therapeutic drug monitoring of flucytosine in serum. Anal Chim Acta 949:59–66. https://doi.org/10.1016/j.aca.2016.10.035

    Article  CAS  PubMed  Google Scholar 

  60. Moghadam BY, Connelly KT, Posner JD (2014) Isotachophoretic preconcenetration on paper-based microfluidic devices. Anal Chem 86(12):5829–5837. https://doi.org/10.1021/ac500780w

    Article  CAS  PubMed  Google Scholar 

  61. Moghadam BY, Connelly KT, Posner JD (2015) Two orders of magnitude improvement in detection limit of lateral flow assays using isotachophoresis. Anal Chem 87(2):1009–1017. https://doi.org/10.1021/ac504552r

    Article  CAS  PubMed  Google Scholar 

  62. Chen F, Ming X, Chen X, Gan M, Wang B, Xu F, Wei H (2014) Immunochromatographic strip for rapid detection of Cronobacter in powdered infant formula in combination with silica-coated magnetic nanoparticles separation and 16S rRNA probe. Biosens Bioelectron 61:306–313. https://doi.org/10.1016/j.bios.2014.05.033

    Article  CAS  PubMed  Google Scholar 

  63. Fang Z, Wu W, Lu X, Zeng L (2014) Lateral flow biosensor for DNA extraction-free detection of Salmonella based on aptamer mediated strand displacement amplification. Biosens Bioelectron 56:192–197. https://doi.org/10.1016/j.bios.2014.01.015

    Article  CAS  PubMed  Google Scholar 

  64. Wang DB, Tian B, Zhang ZP, Wang XY, Fleming J, Bi LJ, Yang RF, Zhang XE (2015) Detection of bacillus anthracis spores by super-paramagnetic lateral-flow immunoassays based on "road closure". Biosens Bioelectron 67:608–614. https://doi.org/10.1016/j.bios.2014.09.067

    Article  CAS  PubMed  Google Scholar 

  65. Lu X, Liang X, Dong J, Fang Z, Zeng L (2016) Lateral flow biosensor for multiplex detection of nitrofuran metabolites based on functionalized magnetic beads. Anal Bioanal Chem 408(24):6703–6709. https://doi.org/10.1007/s00216-016-9787-2

    Article  CAS  PubMed  Google Scholar 

  66. Davis KM, Gibson LE, Haselton FR, Wright DW (2014) Simple sample processing enhances malaria rapid diagnostic test performance. Analyst 139(12):3026–3031. https://doi.org/10.1039/c4an00338a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Huang Y, Wen Y, Baryeh K, Takalkar S, Lund M, Zhang X, Liu G (2017) Magnetized carbon nanotubes for visual detection of proteins directly in whole blood. Anal Chim Acta 993:79–86. https://doi.org/10.1016/j.aca.2017.09.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Huang Y, Wen Y, Baryeh K, Takalkar S, Lund M, Zhang X, Liu G (2017) Lateral flow assay for carbohydrate antigen 19-9 in whole blood by using magnetized carbon nanotubes. Microchim Acta 184(11):4287–4294. https://doi.org/10.1007/s00604-017-2464-0

    Article  CAS  Google Scholar 

  69. Sharma A, Tok AIY, Lee C, Ganapathy R, Alagappan P, Liedberg B (2019) Magnetic field assisted preconcentration of biomolecules for lateral flow assaying. Sensor Actuat B Chem 285:431–437. https://doi.org/10.1016/j.snb.2019.01.073

    Article  CAS  Google Scholar 

  70. Ren W, Mohammed SI, Wereley S, Irudayaraj J (2019) Magnetic focus lateral flow sensor for detection of cervical Cancer biomarkers. Anal Chem 91(4):2876–2884. https://doi.org/10.1021/acs.analchem.8b04848

    Article  CAS  PubMed  Google Scholar 

  71. Kim TH, Park J, Kim CJ, Cho YK (2014) Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens. Anal Chem 86(8):3841–3848. https://doi.org/10.1021/ac403971h

    Article  CAS  PubMed  Google Scholar 

  72. Park BH, Oh SJ, Jung JH, Choi G, Seo JH, Kim DH, Lee EY, Seo TS (2017) An integrated rotary microfluidic system with DNA extraction, loop-mediated isothermal amplification, and lateral flow strip based detection for point-of-care pathogen diagnostics. Biosens Bioelectron 91:334–340. https://doi.org/10.1016/j.bios.2016.11.063

    Article  CAS  PubMed  Google Scholar 

  73. Choi JR, Hu J, Tang R, Gong Y, Feng S, Ren H, Wen T, Li X, Wan Abas WA, **guan-Murphy B, Xu F (2016) An integrated paper-based sample-to-answer biosensor for nucleic acid testing at the point of care. Lab Chip 16(3):611–621. https://doi.org/10.1039/c5lc01388g

    Article  CAS  PubMed  Google Scholar 

  74. Nilghaz A, Guan L, Tan W, Shen W (2016) Advances of paper-Based microfluidics for diagnostics—the original motivation and current status. ACS Sensors 1(12):1382–1393. https://doi.org/10.1021/acssensors.6b00578

    Article  CAS  Google Scholar 

  75. Cho JH, Han SM, Paek EH, Cho IH, Paek SH (2006) Plastic ELISA-on-a-chip based on sequential cross-flow chromatography. Anal Chem 78(3):793–800. https://doi.org/10.1021/ac051453v

    Article  CAS  PubMed  Google Scholar 

  76. Cho IH, Seo SM, Paek EH, Paek SH (2010) Immunogold-silver staining-on-a-chip biosensor based on cross-flow chromatography. J Chromatogr B 878(2):271–277. https://doi.org/10.1016/j.jchromb.2009.07.016

    Article  CAS  Google Scholar 

  77. Park JN, Paek SH, Kim DH, Seo SM, Lim GS, Kang JH, Paek SP, Cho IH, Paek SH (2016) Conformation-sensitive antibody-based point-of-care immunosensor for serum ca(2+) using two-dimensional sequential binding reactions. Biosens Bioelectron 85:611–617. https://doi.org/10.1016/j.bios.2016.05.061

    Article  CAS  PubMed  Google Scholar 

  78. Fu E, Liang T, Houghtaling J, Ramachandran S, Ramsey SA, Lutz B, Yager P (2011) Enhanced sensitivity of lateral flow tests using a two-dimensional paper network format. Anal Chem 83(20):7941–7946. https://doi.org/10.1021/ac201950g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shin JH, Park JK (2016) Functional packaging of lateral flow strip allows simple delivery of multiple reagents for multistep assays. Anal Chem 88(21):10374–10378. https://doi.org/10.1021/acs.analchem.6b02869

    Article  CAS  PubMed  Google Scholar 

  80. Joung HA, Oh YK, Kim MG (2014) An automatic enzyme immunoassay based on a chemiluminescent lateral flow immunosensor. Biosens Bioelectron 53:330–335. https://doi.org/10.1016/j.bios.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  81. Akanda MR, Joung HA, Tamilavan V, Park S, Kim S, Hyun MH, Kim MG, Yang H (2014) An interference-free and rapid electrochemical lateral-flow immunoassay for one-step ultrasensitive detection with serum. Analyst 139(6):1420–1425. https://doi.org/10.1039/c3an02328a

    Article  CAS  PubMed  Google Scholar 

  82. Kim K, Joung HA, Han GR, Kim MG (2016) An immunochromatographic biosensor combined with a water-swellable polymer for automatic signal generation or amplification. Biosens Bioelectron 85:422–428. https://doi.org/10.1016/j.bios.2016.04.096

    Article  CAS  PubMed  Google Scholar 

  83. Kim W, Lee S, Jeon S (2018) Enhanced sensitivity of lateral flow immunoassays by using water-soluble nanofibers and silver-enhancement reactions. Sensor Actuat B Chem 273:1323–1327. https://doi.org/10.1016/j.snb.2018.07.045

    Article  CAS  Google Scholar 

  84. Preechakasedkit P, Siangproh W, Khongchareonporn N, Ngamrojanavanich N, Chailapakul O (2018) Development of an automated wax-printed paper-based lateral flow device for alpha-fetoprotein enzyme-linked immunosorbent assay. Biosens Bioelectron 102:27–32. https://doi.org/10.1016/j.bios.2017.10.051

    Article  CAS  PubMed  Google Scholar 

  85. Fu E, Kauffman P, Lutz B, Yager P (2010) Chemical signal amplification in two-dimensional paper networks. Sensors Actuators B Chem 149(1):325–328. https://doi.org/10.1016/j.snb.2010.06.024

    Article  CAS  Google Scholar 

  86. Fu E, Liang T, Spicar-Mihalic P, Houghtaling J, Ramachandran S, Yager P (2012) Two-dimensional paper network format that enables simple multistep assays for use in low-resource settings in the context of malaria antigen detection. Anal Chem 84(10):4574–4579. https://doi.org/10.1021/ac300689s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fridley GE, Le HQ, Fu E, Yager P (2012) Controlled release of dry reagents in porous media for tunable temporal and spatial distribution upon rehydration. Lab Chip 12(21):4321–4327. https://doi.org/10.1039/c2lc40785j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fridley GE, Le H, Yager P (2014) Highly sensitive immunoassay based on controlled rehydration of patterned reagents in a 2-dimensional paper network. Anal Chem 86(13):6447–6453. https://doi.org/10.1021/ac500872j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Koo CK, He F, Nugen SR (2013) An inkjet-printed electrowetting valve for paper-fluidic sensors. Analyst 138(17):4998–5004. https://doi.org/10.1039/c3an01114c

    Article  CAS  PubMed  Google Scholar 

  90. Connelly JT, Rolland JP, Whitesides GM (2015) "paper machine" for molecular diagnostics. Anal Chem 87(15):7595–7601. https://doi.org/10.1021/acs.analchem.5b00411

    Article  CAS  PubMed  Google Scholar 

  91. Shen M, Chen Y, Zhu Y, Zhao M, Xu Y (2019) Enhancing the sensitivity of lateral flow immunoassay by centrifugation-assisted flow control. Anal Chem 91(7):4814–4820. https://doi.org/10.1021/acs.analchem.9b00421

    Article  CAS  PubMed  Google Scholar 

  92. Choi JR, Liu Z, Hu J, Tang R, Gong Y, Feng S, Ren H, Wen T, Yang H, Qu Z, **guan-Murphy B, Xu F (2016) Polydimethylsiloxane-paper hybrid lateral flow assay for highly sensitive point-of-care nucleic acid testing. Anal Chem 88(12):6254–6264. https://doi.org/10.1021/acs.analchem.6b00195

    Article  CAS  PubMed  Google Scholar 

  93. Yew C-HT, Azari P, Choi JR, Li F, **guan-Murphy B (2018) Electrospin-coating of nitrocellulose membrane enhances sensitivity in nucleic acid-based lateral flow assay. Anal Chim Acta 1009:81–88. https://doi.org/10.1016/j.aca.2018.01.016

    Article  CAS  PubMed  Google Scholar 

  94. Oh YK, Joung HA, Han HS, Suk HJ, Kim MG (2014) A three-line lateral flow assay strip for the measurement of C-reactive protein covering a broad physiological concentration range in human sera. Biosens Bioelectron 61:285–289. https://doi.org/10.1016/j.bios.2014.04.032

    Article  CAS  PubMed  Google Scholar 

  95. Zhu X, Shah P, Stoff S, Liu H, Li CZ (2014) A paper electrode integrated lateral flow immunosensor for quantitative analysis of oxidative stress induced DNA damage. Analyst 139(11):2850–2857. https://doi.org/10.1039/c4an00313f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Huang Y, Wang W, Wu T, Xu LP, Wen Y, Zhang X (2016) A three-line lateral flow biosensor for logic detection of microRNA based on Y-shaped junction DNA and target recycling amplification. Anal Bioanal Chem 408(28):8195–8202. https://doi.org/10.1007/s00216-016-9925-x

    Article  CAS  PubMed  Google Scholar 

  97. Ang GY, Yu CY, Yean CY (2012) Ambient temperature detection of PCR amplicons with a novel sequence-specific nucleic acid lateral flow biosensor. Biosens Bioelectron 38(1):151–156. https://doi.org/10.1016/j.bios.2012.05.019

    Article  CAS  PubMed  Google Scholar 

  98. Huang H, ** L, Yang X, Song Q, Zou B, Jiang S, Sun L, Zhou G (2013) An internal amplification control for quantitative nucleic acid analysis using nanoparticle-based dipstick biosensors. Biosens Bioelectron 42:261–266. https://doi.org/10.1016/j.bios.2012.10.078

    Article  CAS  PubMed  Google Scholar 

  99. Fu Q, Liang J, Lan C, Zhou K, Shi C, Tang Y (2014) Development of a novel dual-functional lateral-flow sensor for on-site detection of small molecule analytes. Sensor Actuat B Chem 203:683–689. https://doi.org/10.1016/j.snb.2014.06.043

    Article  CAS  Google Scholar 

  100. Gao X, Zheng P, Kasani S, Wu S, Yang F, Lewis S, Nayeem S, Engler-Chiurazzi EB, Wigginton JG, Simpkins JW, Wu N (2017) Paper-Based surface-enhanced Raman scattering lateral flow strip for detection of neuron-specific enolase in Blood plasma. Anal Chem 89(18):10104–10110. https://doi.org/10.1021/acs.analchem.7b03015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Choi JR, Hu J, Feng S, Wan Abas WA, **guan-Murphy B, Xu F (2016) Sensitive biomolecule detection in lateral flow assay with a portable temperature-humidity control device. Biosens Bioelectron 79:98–107. https://doi.org/10.1016/j.bios.2015.12.005

    Article  CAS  PubMed  Google Scholar 

  102. Peng T, Yang W-c, Lai W-H, **ong Y-H, Wei H, Zhang J (2014) Improvement of the stability of immunochromatographic assay for the quantitative detection of clenbuterol in swine urine. Anal Methods 6(18):7394–7398. https://doi.org/10.1039/c4ay01173b

    Article  CAS  Google Scholar 

  103. Sotnikov DV, Zherdev AV, Dzantiev BB (2017) Mathematical model of Serodiagnostic Immunochromatographic assay. Anal Chem 89(8):4419–4427. https://doi.org/10.1021/acs.analchem.6b03635

    Article  CAS  PubMed  Google Scholar 

  104. Schaumburg F, Kler PA, Berli CLA (2018) Numerical prototy** of lateral flow biosensors. Sensors Actuators B Chem 259:1099–1107. https://doi.org/10.1016/j.snb.2017.12.044

    Article  CAS  Google Scholar 

  105. Zadehkafi A, Siavashi M, Asiaei S, Bidgoli MR (2019) Simple geometrical modifications for substantial color intensity and detection limit enhancements in lateral-flow immunochromatographic assays. J Chromatogr B 1110-1111:1–8. https://doi.org/10.1016/j.jchromb.2019.01.019

    Article  CAS  Google Scholar 

  106. Liu J, Lu Y (2003) A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 125(22):6642–6643. https://doi.org/10.1021/ja034775u

    Article  CAS  PubMed  Google Scholar 

  107. Jia J, Wang B, Wu A, Cheng G, Li Z, Dong S (2002) A method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol−gel network. Anal Chem 74(9):2217–2223. https://doi.org/10.1021/ac011116w

    Article  CAS  PubMed  Google Scholar 

  108. Liu G, Lin YY, Wang J, Wu H, Wai CM, Lin Y (2007) Disposable electrochemical immunosensor diagnosis device based on nanoparticle probe and immunochromatographic strip. Anal Chem 79(20):7644–7653. https://doi.org/10.1021/ac070691i

    Article  CAS  PubMed  Google Scholar 

  109. Guodong L, Mao X, Phillips JA, Xu H, Tan W, Lingwen Z (2009) Aptamer-nanoparticle strip biosensor for sensitive detection of Cancer cells. Anal Chem 81:6. https://doi.org/10.1021/ac901889s

    Article  CAS  Google Scholar 

  110. Panferov VG, Safenkova IV, Varitsev YA, Zherdev AV, Dzantiev BB (2017) Enhancement of lateral flow immunoassay by alkaline phosphatase: a simple and highly sensitive test for potato virus X. Microchim Acta 185(1):25. https://doi.org/10.1007/s00604-017-2595-3

    Article  CAS  Google Scholar 

  111. He Y, Zeng K, Gurung AS, Baloda M, Xu H, Zhang X, Liu G (2010) Visual detection of single-nucleotide polymorphism with hairpin oligonucleotide-functionalized gold nanoparticles. Anal Chem 82(17):7169–7177. https://doi.org/10.1021/ac101275s

    Article  CAS  PubMed  Google Scholar 

  112. He Y, Zhang S, Zhang X, Baloda M, Gurung AS, Xu H, Zhang X, Liu G (2011) Ultrasensitive nucleic acid biosensor based on enzyme-gold nanoparticle dual label and lateral flow strip biosensor. Biosens Bioelectron 26(5):2018–2024. https://doi.org/10.1016/j.bios.2010.08.079

    Article  CAS  PubMed  Google Scholar 

  113. He Y, Zeng K, Zhang S, Gurung AS, Baloda M, Zhang X, Liu G (2012) Visual detection of gene mutations based on isothermal strand-displacement polymerase reaction and lateral flow strip. Biosens Bioelectron 31(1):310–315. https://doi.org/10.1016/j.bios.2011.10.037

    Article  CAS  PubMed  Google Scholar 

  114. He Y, Zhang X, Zhang S, Kris MK, Man FC, Kawde AN, Liu G (2012) Visual detection of single-base mismatches in DNA using hairpin oligonucleotide with double-target DNA binding sequences and gold nanoparticles. Biosens Bioelectron 34(1):37–43. https://doi.org/10.1016/j.bios.2011.12.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lie P, Liu J, Fang Z, Dun B, Zeng L (2012) A lateral flow biosensor for detection of nucleic acids with high sensitivity and selectivity. Chem Commun 48(2):236–238. https://doi.org/10.1039/c1cc15878c

    Article  CAS  Google Scholar 

  116. Gao X, Xu H, Baloda M, Gurung AS, Xu LP, Wang T, Zhang X, Liu G (2014) Visual detection of microRNA with lateral flow nucleic acid biosensor. Biosens Bioelectron 54:578–584. https://doi.org/10.1016/j.bios.2013.10.055

    Article  CAS  PubMed  Google Scholar 

  117. Gao X, Xu LP, Wu T, Wen Y, Ma X, Zhang X (2016) An enzyme-amplified lateral flow strip biosensor for visual detection of microRNA-224. Talanta 146:648–654. https://doi.org/10.1016/j.talanta.2015.06.060

    Article  CAS  PubMed  Google Scholar 

  118. Xu H, Chen J, Birrenkott J, Zhao JX, Takalkar S, Baryeh K, Liu G (2014) Gold-nanoparticle-decorated silica nanorods for sensitive visual detection of proteins. Anal Chem 86(15):7351–7359. https://doi.org/10.1021/ac502249f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Fang Z, Ge C, Zhang W, Lie P, Zeng L (2011) A lateral flow biosensor for rapid detection of DNA-binding protein c-Jun. Biosens Bioelectron 27(1):192–196. https://doi.org/10.1016/j.bios.2011.06.014

    Article  CAS  PubMed  Google Scholar 

  120. He Y, Zhang X, Zeng K, Zhang S, Baloda M, Gurung AS, Liu G (2011) Visual detection of hg(2)(+) in aqueous solution using gold nanoparticles and thymine-rich hairpin DNA probes. Biosens Bioelectron 26(11):4464–4470. https://doi.org/10.1016/j.bios.2011.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Fang Z, Huang J, Lie P, **ao Z, Ouyang C, Wu Q, Wu Y, Liu G, Zeng L (2010) Lateral flow nucleic acid biosensor for Cu2+ detection in aqueous solution with high sensitivity and selectivity. Chem Commun 46(47):9043–9045. https://doi.org/10.1039/c0cc02782k

    Article  CAS  Google Scholar 

  122. Chen J, Zhou X, Zeng L (2013) Enzyme-free strip biosensor for amplified detection of Pb2+ based on a catalytic DNA circuit. Chem Commun 49(10):984–986. https://doi.org/10.1039/c2cc37598b

    Article  CAS  Google Scholar 

  123. Mazumdar D, Liu J, Lu G, Zhou J, Lu Y (2010) Easy-to-use dipstick tests for detection of lead in paints using non-cross-linked gold nanoparticle-DNAzyme conjugates. Chem Commun 46(9):1416–1418. https://doi.org/10.1039/b917772h

    Article  CAS  Google Scholar 

  124. Shyu R-H, Shyu H-F, Liu H-W, Tang S-S (2002) Colloidal gold-based immunochromatographic assay for detection of ricin. Toxicon 40(3):255–258. https://doi.org/10.1016/s0041-0101(01)00193-3

    Article  CAS  PubMed  Google Scholar 

  125. Xu H, Mao X, Zeng Q, Wang S, Kawde AN, Liu G (2009) Aptamer-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for protein analysis. Anal Chem 81(2):669–675. https://doi.org/10.1021/ac8020592

    Article  CAS  PubMed  Google Scholar 

  126. Jauset-Rubio M, Svobodova M, Mairal T, McNeil C, Keegan N, El-Shahawi MS, Bashammakh AS, Alyoubi AO, O'Sullivan CK (2016) Aptamer lateral flow assays for ultrasensitive detection of beta-Conglutin combining recombinase polymerase amplification and tailed primers. Anal Chem 88(21):10701–10709. https://doi.org/10.1021/acs.analchem.6b03256

    Article  CAS  PubMed  Google Scholar 

  127. Liu G, Mao X, Phillips JA, Xu H, Tan W, Zeng L (2009) Aptamer-nanoparticle strip biosensor for sensitive detection of cancer cells. Anal Chem 81(24):10013–10018. https://doi.org/10.1021/ac901889s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wu W, Zhao S, Mao Y, Fang Z, Lu X, Zeng L (2015) A sensitive lateral flow biosensor for Escherichia coli O157:H7 detection based on aptamer mediated strand displacement amplification. Anal Chim Acta 861:62–68. https://doi.org/10.1016/j.aca.2014.12.041

    Article  CAS  PubMed  Google Scholar 

  129. Mudanyali O, Dimitrov S, Sikora U, Padmanabhan S, Navruz I, Ozcan A (2012) Integrated rapid-diagnostic-test reader platform on a cellphone. Lab Chip 12(15):2678–2686. https://doi.org/10.1039/c2lc40235a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. You DJ, Park TS, Yoon JY (2013) Cell-phone-based measurement of TSH using Mie scatter optimized lateral flow assays. Biosens Bioelectron 40(1):180–185. https://doi.org/10.1016/j.bios.2012.07.014

    Article  CAS  PubMed  Google Scholar 

  131. Yang J-S, Shin J, Choi S, Jung H-I (2017) Smartphone diagnostics unit (SDU) for the assessment of human stress and inflammation level assisted by biomarker ink, fountain pen, and origami holder for strip biosensor. Sensor Actuat B Chem 241:80–84. https://doi.org/10.1016/j.snb.2016.10.052

    Article  CAS  Google Scholar 

  132. Song C, Zhi A, Liu Q, Yang J, Jia G, Shervin J, Tang L, Hu X, Deng R, Xu C, Zhang G (2013) Rapid and sensitive detection of beta-agonists using a portable fluorescence biosensor based on fluorescent nanosilica and a lateral flow test strip. Biosens Bioelectron 50:62–65. https://doi.org/10.1016/j.bios.2013.06.022

    Article  CAS  PubMed  Google Scholar 

  133. Ozalp VC, Zeydanli US, Lunding A, Kavruk M, Oz MT, Eyidogan F, Olsen LF, Oktem HA (2013) Nanoparticle embedded enzymes for improved lateral flow sensors. Analyst 138(15):4255–4259. https://doi.org/10.1039/c3an00733b

    Article  CAS  PubMed  Google Scholar 

  134. Zangheri M, Di Nardo F, Anfossi L, Giovannoli C, Baggiani C, Roda A, Mirasoli M (2015) A multiplex chemiluminescent biosensor for type B-fumonisins and aflatoxin B1 quantitative detection in maize flour. Analyst 140(1):358–365. https://doi.org/10.1039/c4an01613k

    Article  CAS  PubMed  Google Scholar 

  135. Paterson AS, Raja B, Garvey G, Kolhatkar A, Hagstrom AE, Kourentzi K, Lee TR, Willson RC (2014) Persistent luminescence strontium aluminate nanoparticles as reporters in lateral flow assays. Anal Chem 86(19):9481–9488. https://doi.org/10.1021/ac5012624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zhao Y, Zhou C, Wu R, Li L, Shen H, Li LS (2015) Preparation of multi-shell structured fluorescent composite nanoparticles for ultrasensitive human procalcitonin detection. RSC Adv 5(8):5988–5995. https://doi.org/10.1039/c4ra13362e

    Article  CAS  Google Scholar 

  137. Wang L, Chen W, Ma W, Liu L, Ma W, Zhao Y, Zhu Y, Xu L, Kuang H, Xu C (2011) Fluorescent strip sensor for rapid determination of toxins. Chem Commun 47(5):1574–1576. https://doi.org/10.1039/c0cc04032k

    Article  CAS  Google Scholar 

  138. Li S, Liu C, Han B, Luo J, Yin G (2017) An electrochemiluminescence aptasensor switch for aldicarb recognition via ruthenium complex-modified dendrimers on multiwalled carbon nanotubes. Microchim Acta 184(6):1669–1675. https://doi.org/10.1007/s00604-017-2177-4

    Article  CAS  Google Scholar 

  139. Wang R, Zhang W, Wang P, Su X (2018) A paper-based competitive lateral flow immunoassay for multi beta-agonist residues by using a single monoclonal antibody labelled with red fluorescent nanoparticles. Microchim Acta 185(3):191. https://doi.org/10.1007/s00604-018-2730-9

    Article  CAS  Google Scholar 

  140. Wang Y, Wang Y, Li D, Xu J, Ye C (2018) Detection of nucleic acids and elimination of carryover contamination by using loop-mediated isothermal amplification and antarctic thermal sensitive uracil-DNA-glycosylase in a lateral flow biosensor: application to the detection of Streptococcus pneumoniae. Microchim Acta 185(4):212. https://doi.org/10.1007/s00604-018-2723-8

    Article  CAS  Google Scholar 

  141. Zhang J, Lv X, Feng W, Li X, Li K, Deng Y (2018) Aptamer-based fluorometric lateral flow assay for creatine kinase MB. Microchim Acta 185(8):364. https://doi.org/10.1007/s00604-018-2905-4

    Article  CAS  Google Scholar 

  142. Zeng Y, Liang D, Zheng P, Peng T, Sun S, Mari GM, Jiang H (2019) Immunochromatographic fluorometric determination of clenbuterol with enhanced sensitivity. Microchim Acta 186(4):225. https://doi.org/10.1007/s00604-019-3326-8

    Article  CAS  Google Scholar 

  143. Deng J, Yang M, Wu J, Zhang W, Jiang X (2018) A self-contained chemiluminescent lateral flow assay for point-of-care testing. Anal Chem 90(15):9132–9137. https://doi.org/10.1021/acs.analchem.8b01543

    Article  CAS  PubMed  Google Scholar 

  144. Zangheri M, Mirasoli M, Guardigli M, Di Nardo F, Anfossi L, Baggiani C, Simoni P, Benassai M, Roda A (2019) Chemiluminescence-based biosensor for monitoring astronauts' health status during space missions: results from the international Space Station. Biosens Bioelectron 129:260–268. https://doi.org/10.1016/j.bios.2018.09.059

    Article  CAS  PubMed  Google Scholar 

  145. Li X, Lu D, Sheng Z, Chen K, Guo X, ** M, Han H (2012) A fast and sensitive immunoassay of avian influenza virus based on label-free quantum dot probe and lateral flow test strip. Talanta 100:1–6. https://doi.org/10.1016/j.talanta.2012.08.041

    Article  CAS  PubMed  Google Scholar 

  146. Wu F, Yuan H, Zhou C, Mao M, Liu Q, Shen H, Cen Y, Qin Z, Ma L, Song Li L (2016) Multiplexed detection of influenza a virus subtype H5 and H9 via quantum dot-based immunoassay. Biosens Bioelectron 77:464–470. https://doi.org/10.1016/j.bios.2015.10.002

    Article  CAS  PubMed  Google Scholar 

  147. Anfossi L, Di Nardo F, Cavalera S, Giovannoli C, Spano G, Speranskaya ES, Goryacheva IY, Baggiani C (2018) A lateral flow immunoassay for straightforward determination of fumonisin mycotoxins based on the quenching of the fluorescence of CdSe/ZnS quantum dots by gold and silver nanoparticles. Microchim Acta 185(2):94. https://doi.org/10.1007/s00604-017-2642-0

    Article  CAS  Google Scholar 

  148. Wu J, Ma J, Wang H, Qin D, An L, Ma Y, Zheng Z, Hua X, Wang T, Wu X (2019) Rapid and visual detection of benzothiostrobin residue in strawberry using quantum dot-based lateral flow test strip. Sensor Actuat B Chem 283:222–229. https://doi.org/10.1016/j.snb.2018.11.137

    Article  CAS  Google Scholar 

  149. Zangheri M, Cevenini L, Anfossi L, Baggiani C, Simoni P, Di Nardo F, Roda A (2015) A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection. Biosens Bioelectron 64:63–68. https://doi.org/10.1016/j.bios.2014.08.048

    Article  CAS  PubMed  Google Scholar 

  150. Yeo SJ, Choi K, Cuc BT, Hong NN, Bao DT, Ngoc NM, Le MQ, Hang Nle K, Thach NC, Mallik SK, Kim HS, Chong CK, Choi HS, Sung HW, Yu K, Park H (2016) Smartphone-Based fluorescent diagnostic system for highly pathogenic H5N1 viruses. Theranostics 6(2):231–242. https://doi.org/10.7150/thno.14023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Qin W, Wang K, **ao K, Hou Y, Lu W, Xu H, Wo Y, Feng S, Cui D (2017) Carcinoembryonic antigen detection with "handing"-controlled fluorescence spectroscopy using a color matrix for point-of-care applications. Biosens Bioelectron 90:508–515. https://doi.org/10.1016/j.bios.2016.10.052

    Article  CAS  PubMed  Google Scholar 

  152. Magiati M, Sevastou A, Kalogianni DP (2018) A fluorometric lateral flow assay for visual detection of nucleic acids using a digital camera readout. Microchim Acta 185(6):1–9. https://doi.org/10.1007/s00604-018-2856-9

    Article  CAS  Google Scholar 

  153. Rong Z, Wang Q, Sun N, Jia X, Wang K, **ao R, Wang S (2019) Smartphone-based fluorescent lateral flow immunoassay platform for highly sensitive point-of-care detection of Zika virus nonstructural protein 1. Anal Chim Acta 1055:140–147. https://doi.org/10.1016/j.aca.2018.12.043

    Article  CAS  PubMed  Google Scholar 

  154. You M, Lin M, Gong Y, Wang S, Li A, Ji L, Zhao H, Ling K, Wen T, Huang Y, Gao D, Ma Q, Wang T, Ma A, Li X, Xu F (2017) Household fluorescent lateral flow strip platform for sensitive and quantitative prognosis of heart failure using dual-color Upconversion nanoparticles. ACS Nano 11(6):6261–6270. https://doi.org/10.1021/acsnano.7b02466

    Article  CAS  PubMed  Google Scholar 

  155. Cheng N, Song Y, Fu Q, Du D, Luo Y, Wang Y, Xu W, Lin Y (2018) Aptasensor based on fluorophore-quencher nano-pair and smartphone spectrum reader for on-site quantification of multi-pesticides. Biosens Bioelectron 117:75–83. https://doi.org/10.1016/j.bios.2018.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Liu J, Ji D, Meng H, Zhang L, Wang J, Huang Z, Chen J, Li J, Li Z (2018) A portable fluorescence biosensor for rapid and sensitive glutathione detection by using quantum dots-based lateral flow test strip. Sensors Actuators B Chem 262:486–492. https://doi.org/10.1016/j.snb.2018.02.040

    Article  CAS  Google Scholar 

  157. Wang X, Choi N, Cheng Z, Ko J, Chen L, Choo J (2017) Simultaneous detection of dual nucleic acids using a SERS-Based lateral flow assay biosensor. Anal Chem 89(2):1163–1169. https://doi.org/10.1021/acs.analchem.6b03536

    Article  CAS  PubMed  Google Scholar 

  158. **ao M, **e K, Dong X, Wang L, Huang C, Xu F, **ao W, ** M, Huang B, Tang Y (2019) Ultrasensitive detection of avian influenza a (H7N9) virus using surface-enhanced Raman scattering-based lateral flow immunoassay strips. Anal Chim Acta 1053:139–147. https://doi.org/10.1016/j.aca.2018.11.056

    Article  CAS  PubMed  Google Scholar 

  159. Tran V, Walkenfort B, Konig M, Salehi M, Schlucker S (2019) Rapid, quantitative, and ultrasensitive point-of-care testing: a portable SERS reader for lateral flow assays in clinical chemistry. Angew Chem 58(2):442–446. https://doi.org/10.1002/anie.201810917

    Article  CAS  Google Scholar 

  160. Shi Q, Huang J, Sun Y, Deng R, Teng M, Li Q, Yang Y, Hu X, Zhang Z, Zhang G (2018) A SERS-based multiple immuno-nanoprobe for ultrasensitive detection of neomycin and quinolone antibiotics via a lateral flow assay. Microchim Acta 185(2):84. https://doi.org/10.1007/s00604-017-2556-x

    Article  CAS  Google Scholar 

  161. Abbas A, Brimer A, Slocik JM, Tian L, Naik RR, Singamaneni S (2013) Multifunctional analytical platform on a paper strip: separation, preconcentration, and subattomolar detection. Anal Chem 85(8):3977–3983. https://doi.org/10.1021/ac303567g

    Article  CAS  PubMed  Google Scholar 

  162. Fu X, Cheng Z, Yu J, Choo P, Chen L, Choo J (2016) A SERS-based lateral flow assay biosensor for highly sensitive detection of HIV-1 DNA. Biosens Bioelectron 78:530–537. https://doi.org/10.1016/j.bios.2015.11.099

    Article  CAS  PubMed  Google Scholar 

  163. Hwang J, Lee S, Choo J (2016) Application of a SERS-based lateral flow immunoassay strip for the rapid and sensitive detection of staphylococcal enterotoxin B. Nanoscale 8(22):11418–11425. https://doi.org/10.1039/c5nr07243c

    Article  CAS  PubMed  Google Scholar 

  164. Choi S, Hwang J, Lee S, Lim DW, Joo H, Choo J (2017) Quantitative analysis of thyroid-stimulating hormone (TSH) using SERS-based lateral flow immunoassay. Sensor Actuat B Chem 240:358–364. https://doi.org/10.1016/j.snb.2016.08.178

    Article  CAS  Google Scholar 

  165. Khlebtsov BN, Bratashov DN, Byzova NA, Dzantiev BB, Khlebtsov NG (2018) SERS-based lateral flow immunoassay of troponin I by using gap-enhanced Raman tags. Nano Res 12(2):413–420. https://doi.org/10.1007/s12274-018-2232-4

    Article  CAS  Google Scholar 

  166. Li X, Yang T, Song Y, Zhu J, Wang D, Li W (2019) Surface-enhanced Raman spectroscopy (SERS)-based immunochromatographic assay (ICA) for the simultaneous detection of two pyrethroid pesticides. Sensor Actuat B-Chem 283:230–238. https://doi.org/10.1016/j.snb.2018.11.112

    Article  CAS  Google Scholar 

  167. Li Y, Tang S, Zhang W, Cui X, Zhang Y, ** Y, Zhang X, Chen Y (2019) A surface-enhanced Raman scattering-based lateral flow immunosensor for colistin in raw milk. Sensor Actuat B-Chem 282:703–711. https://doi.org/10.1016/j.snb.2018.11.050

    Article  CAS  Google Scholar 

  168. Shen H, **e K, Huang L, Wang L, Ye J, **ao M, Ma L, Jia A, Tang Y (2019) A novel SERS-based lateral flow assay for differential diagnosis of wild-type pseudorabies virus and gE-deleted vaccine. Sensor Actuat B Chem 282:152–157. https://doi.org/10.1016/j.snb.2018.11.065

    Article  CAS  Google Scholar 

  169. Wu Z (2019) Simultaneous detection of listeria monocytogenes and Salmonella typhimurium by a SERS-Based lateral flow Immunochromatographic assay. Food Anal Methods 12(5):1086–1091. https://doi.org/10.1007/s12161-019-01444-4

    Article  Google Scholar 

  170. Lin L-K, Stanciu LA (2018) Bisphenol a detection using gold nanostars in a SERS improved lateral flow immunochromatographic assay. Sensor Actuat B Chem 276:222–229. https://doi.org/10.1016/j.snb.2018.08.068

    Article  CAS  Google Scholar 

  171. Yang Y, Ozsoz M, Liu G (2017) Gold nanocage-based lateral flow immunoassay for immunoglobulin G. Microchim Acta 184(7):2023–2029. https://doi.org/10.1007/s00604-017-2176-5

    Article  CAS  Google Scholar 

  172. Zhang J, Yu Q, Qiu W, Li K, Qian L, Zhang X, Liu G (2019) Gold-platinum nanoflowers as a label and as an enzyme mimic for use in highly sensitive lateral flow immunoassays: application to detection of rabbit IgG. Microchim Acta 186(6):357. https://doi.org/10.1007/s00604-019-3464-z

    Article  CAS  Google Scholar 

  173. Lu X, Mei T, Guo Q, Zhou W, Li X, Chen J, Zhou X, Sun N, Fang Z (2018) Improved performance of lateral flow immunoassays for alpha-fetoprotein and vanillin by using silica shell-stabilized gold nanoparticles. Microchim Acta 186(1):2. https://doi.org/10.1007/s00604-018-3107-9

    Article  CAS  Google Scholar 

  174. Yang D, Ma J, Zhang Q, Li N, Yang J, Raju PA, Peng M, Luo Y, Hui W, Chen C, Cui Y (2013) Polyelectrolyte-coated gold magnetic nanoparticles for immunoassay development: toward point of care diagnostics for syphilis screening. Anal Chem 85(14):6688–6695. https://doi.org/10.1021/ac400517e

    Article  CAS  PubMed  Google Scholar 

  175. Juntunen E, Myyryläinen T, Salminen T, Soukka T, Pettersson K (2012) Performance of fluorescent europium(III) nanoparticles and colloidal gold reporters in lateral flow bioaffinity assay. Anal Biochem 428(1):31–38. https://doi.org/10.1016/j.ab.2012.06.005

    Article  CAS  PubMed  Google Scholar 

  176. Shukla S, Leem H, Kim M (2011) Development of a liposome-based immunochromatographic strip assay for the detection of Salmonella. Anal Bioanal Chem 401(8):2581–2590. https://doi.org/10.1007/s00216-011-5327-2

    Article  CAS  PubMed  Google Scholar 

  177. Mao X, Wang W, Du TE (2013) Dry-reagent nucleic acid biosensor based on blue dye doped latex beads and lateral flow strip. Talanta 114:248–253. https://doi.org/10.1016/j.talanta.2013.04.044

    Article  CAS  PubMed  Google Scholar 

  178. Kalogianni DP, Boutsika LM, Kouremenou PG, Christopoulos TK, Ioannou PC (2011) Carbon nano-strings as reporters in lateral flow devices for DNA sensing by hybridization. Anal Bioanal Chem 400(4):1145–1152. https://doi.org/10.1007/s00216-011-4845-2

    Article  CAS  PubMed  Google Scholar 

  179. Blazkova M, Rauch P, Fukal L (2010) Strip-based immunoassay for rapid detection of thiabendazole. Biosens Bioelectron 25(9):2122–2128. https://doi.org/10.1016/j.bios.2010.02.011

    Article  CAS  PubMed  Google Scholar 

  180. Takalkar S, Baryeh K, Liu G (2017) Fluorescent carbon nanoparticle-based lateral flow biosensor for ultrasensitive detection of DNA. Biosens Bioelectron 98:147–154. https://doi.org/10.1016/j.bios.2017.06.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Qiu W, Xu H, Takalkar S, Gurung AS, Liu B, Zheng Y, Guo Z, Baloda M, Baryeh K, Liu G (2015) Carbon nanotube-based lateral flow biosensor for sensitive and rapid detection of DNA sequence. Biosens Bioelectron 64:367–372. https://doi.org/10.1016/j.bios.2014.09.028

    Article  CAS  PubMed  Google Scholar 

  182. Rundstrom G, Jonsson A, Martensson O, Mendel-Hartvig I, Venge P (2006) Lateral flow immunoassay using europium (III) chelate microparticles and time-resolved fluorescence for eosinophils and neutrophils in whole Blood. Clin Chem 53(2):342–348. https://doi.org/10.1373/clinchem.2006.074021

    Article  CAS  PubMed  Google Scholar 

  183. Kang JH, Kwon DH, Chung TW, Kim YD, Lee HG, Kim JW, Choe IS, Kim KW, Lim JS, Song EY, Kim CH (2007) Development of a simple and rapid immunochromatographic strip test for diarrhea-causative porcine rotavirus in swine stool. J Virol Methods 146(1–2):74–79. https://doi.org/10.1016/j.jviromet.2007.06.002

    Article  CAS  PubMed  Google Scholar 

  184. Liu C, Jia Q, Yang C, Qiao R, **g L, Wang L, Xu C, Gao M (2011) Lateral flow immunochromatographic assay for sensitive pesticide detection by using Fe3O4 nanoparticle aggregates as color reagents. Anal Chem 83(17):6778–6784. https://doi.org/10.1021/ac201462d

    Article  CAS  PubMed  Google Scholar 

  185. Hou Y, Wang K, **ao K, Qin W, Lu W, Tao W, Cui D (2017) Smartphone-Based dual-modality imaging system for quantitative detection of color or fluorescent lateral flow Immunochromatographic strips. Nanoscale Res Lett 12(1):291. https://doi.org/10.1186/s11671-017-2078-9

    Article  PubMed  PubMed Central  Google Scholar 

  186. Ruppert C, Phogat N, Laufer S, Kohl M, Deigner HP (2019) A smartphone readout system for gold nanoparticle-based lateral flow assays: application to monitoring of digoxigenin. Microchim Acta 186(2):119. https://doi.org/10.1007/s00604-018-3195-6

    Article  CAS  Google Scholar 

  187. H-b L, X-j D, Zang Y-X, Li P, Wang S (2017) SERS-Based lateral flow strip biosensor for simultaneous detection of listeria monocytogenes and Salmonella enterica serotype Enteritidis. J Agric Food Chem 65(47):10290–10299. https://doi.org/10.1021/acs.jafc.7b03957

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Institute of Health, Centers of Biomedical Research Excellence (NIH, COBRE, Grant number: P20 GM109024), the National Natural Science Foundation of China (Grant No. 31700735), the National Natural Science Foundation of Anhui Province (Grant No: 1908085 MB54, 1808085QH264), the Bei**g Natural Science Foundation (Grant No. 2122038), Wanjiang scholar Award of Anhui Province, Basic research business fund of central universities (FRF-TP-18-020A1), China Postdoctoral Science Foundation (2018 M631332).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lisheng Qian, Xueji Zhang or Guodong Liu.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Xu, T., Wang, W. et al. Lateral flow biosensors based on the use of micro- and nanomaterials: a review on recent developments. Microchim Acta 187, 70 (2020). https://doi.org/10.1007/s00604-019-3822-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3822-x

Keywords

Navigation