Log in

A nanocomposite prepared from silver nanoparticles and carbon dots with peroxidase mimicking activity for colorimetric and SERS-based determination of uric acid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Silver-carbon dots (Ag-CDs) nanocomposites with excellent peroxidase-like and surface-enhanced Raman scattering (SERS) activities were fabricated by reducing silver ion with carbon dots. The formation of the core-shell structure was demonstrated by transmission electron microscopy. The Ag-CD nanocomposite catalyzes the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of H2O2 to form oxidized TMB (oxTMB) that has a blue color with an absorption maximum at 652 nm. The catalytic activity originates from the fact that the electrons of CDs are transferred to H2O2 and decompose H2O2 into hydroxy radicals. The nanocomposites can be used for uric acid (UA) detection because UA can reduce oxTMB to form colorless TMB. The absorbance drops as the concentration of UA increases from 1 to 500 μM. The SERS signal of oxTMB can be detected (at 1605 cm−1) using the Ag-CD nanocomposites as SERS substrate. The intensity of the SERS signal decreases when the concentration of UA ranges from 0.01 to 500 μM.

Schematic representation of the fabrication of silver-carbon dots (Ag-CDs). The Ag-CDs catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) by H2O2 to form blue-colored oxidized TMB (oxTMB). UA reduces oxTMB to form colorless TMB. This process is monitored by surface-enhanced Raman scattering (SERS) spectra for UA detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen YJ, Cao HY, Shi WB, Liu H, Huang Y (2013) Fe-co bimetallic alloy nanoparticles as a highly active peroxidase mimetic and its application in biosensing. Chem Commun 49:5013–5015

    Article  CAS  Google Scholar 

  2. Chen HY, Qiu QM, Sharif S, Ying S, Wang Y, Ying Y (2018) Solution-phase synthesis of platinum nanoparticle-decorated metal-organic framework hybrid nanomaterials as biomimetic Nanoenzymes for biosensing applications. Acs Appl Mater Inter 10:24108–24115

    Article  CAS  Google Scholar 

  3. Zhang JW, Zhang HT, Du ZY et al (2014) Water-stable metal-organic frameworks with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. Chem Commun 50:1092–1094

    Article  CAS  Google Scholar 

  4. Sun AQ, Mu L, Hu XG (2017) Graphene oxide quantum dots as novel Nanozymes for alcohol intoxication. Acs Appl Mater Inter 9:12241–12252

    Article  CAS  Google Scholar 

  5. Wang H, Li S, Si YM, Sun Z, Li S, Lin Y (2014) Recyclable enzyme mimic of cubic Fe3O4 nanoparticles loaded on graphene oxide-dispersed carbon nanotubes with enhanced peroxidase-like catalysis and electrocatalysis. J Mater Chem B 2:4442–4448

    Article  CAS  Google Scholar 

  6. Datta A, Kapri S, Bhattacharyya S (2016) Carbon dots with tunable concentrations of trapped anti-oxidant as an efficient metal-free catalyst for electrochemical water oxidation. J Mater Chem A 4:14614–14624

    Article  CAS  Google Scholar 

  7. Safavi A, Sedaghati F, Shahbaazi H, Farjami E (2012) Facile approach to the synthesis of carbon nanodots and their peroxidase mimetic function in azo dyes degradation. RSC Adv 2:7367–7370

    Article  CAS  Google Scholar 

  8. Cailotto S, Mazzaro R, Enrichi F, Vomiero A, Selva M, Cattaruzza E, Cristofori D, Amadio E, Perosa A (2018) Design of Carbon Dots for metal-free Photoredox catalysis. Acs Appl Mater Inter 10:40560–40567

    Article  CAS  Google Scholar 

  9. Zhang HC, Ming H, Lian SY, Huang H, Li H, Zhang L, Liu Y, Kang Z, Lee ST (2011) Fe2O3/carbon quantum dots complex photocatalysts and their enhanced photocatalytic activity under visible light. Dalton T 40:10822–10825

    Article  CAS  Google Scholar 

  10. Yu H, Zhang HC, Huang H, Liu Y, Li H, Ming H, Kang Z (2012) ZnO/carbon quantum dots nanocomposites: one-step fabrication and superior photocatalytic ability for toxic gas degradation under visible light at room temperature. New J Chem 36:1031–1035

    Article  CAS  Google Scholar 

  11. Liu RH, Huang H, Li HT, Liu Y, Zhong J, Li Y, Zhang S, Kang Z (2014) Metal nanoparticle/carbon quantum dot composite as a Photocatalyst for high-efficiency cyclohexane oxidation. ACS Catal 4:328–336

    Article  CAS  Google Scholar 

  12. Luo PH, Li C, Shi GQ (2012) Synthesis of gold@carbon dots composite nanoparticles for surface enhanced Raman scattering. Phys Chem Chem Phys 14:7360–7366

    Article  CAS  Google Scholar 

  13. Zhao HY, Guo Y, Zhu SJ, Song Y, ** J, Ji W, Song W, Zhao B, Yang B, Ozaki Y (2017) Facile synthesis of silver nanoparticles/carbon dots for a charge transfer study and peroxidase-like catalytic monitoring by surface-enhanced Raman scattering. Appl Surf Sci 410:42–50

    Article  CAS  Google Scholar 

  14. Zhang Y, **ng CS, Jiang DL, Chen M (2013) Facile synthesis of core-shell-satellite ag/C/ag nanocomposites using carbon nanodots as reductant and their SERS properties. Crystengcomm 15:6305–6310

    Article  CAS  Google Scholar 

  15. Chen C, Li Y, Kerman S, Neutens P, Willems K, Cornelissen S, Lagae L, Stakenborg T, van Dorpe P (2018) High spatial resolution nanoslit SERS for single-molecule nucleobase sensing. Nat Commun 9:1733

    Article  Google Scholar 

  16. Dies H, Nosrati R, Raveendran J, Escobedo C, Docoslis A (2018) SERS-from-scratch: an electric field-guided nanoparticle assembly method for cleanroom-free and low-cost preparation of surface-enhanced Raman scattering substrates. Colloid Surface A 553:695–702

    Article  CAS  Google Scholar 

  17. Shi RY, Liu XJ, Ying YB (2018) Facing challenges in real-life application of surface-enhanced Raman scattering: design and nanofabrication of surface-enhanced Raman scattering substrates for rapid field test of food contaminants. J Agr Food Chem 66:6525–6543

    Article  CAS  Google Scholar 

  18. Cheng Z, Choi N, Wang R, Lee S, Moon KC, Yoon SY, Chen L, Choo J (2017) Simultaneous detection of dual prostate specific antigens using surface-enhanced Raman scattering-based immunoassay for accurate diagnosis of prostate cancer. ACS Nano 11:4926–4933

    Article  CAS  Google Scholar 

  19. Yang F, Sun P, Zhao HS et al (2018) Genetic association and functional analysis of rs7903456 in FAM35A gene and hyperuricemia: a population based study. Sci Rep-Uk 8:9579

    Article  Google Scholar 

  20. Choe JY, Kim SK (2015) Association between serum uric acid and inflammation in rheumatoid arthritis: perspective on lowering serum uric acid of leflunomide. Clin Chim Acta 438:29–34

    Article  CAS  Google Scholar 

  21. Chen HW, Chen YC, Yang FM et al (2018) Mediators of the effects of gender on uric acid nephrolithiasis: a novel application of structural equation modeling. Sci Rep-Uk 8

  22. Pan YD, Yang YF, Pang YJ, Shi Y, Long Y, Zheng H (2018) Enhancing the peroxidase-like activity of ficin via heme binding and colorimetric detection for uric acid. Talanta 185:433–438

    Article  CAS  Google Scholar 

  23. Kim MC, Kwak J, Lee SY (2016) Sensing of uric acid via cascade catalysis of uricase and a biomimetic catalyst. Sensor Actuat B-Chem 232:744–749

    Article  CAS  Google Scholar 

  24. Zhuang QQ, Lin ZH, Jiang YC, Deng HH, He SB, Su LT, Shi XQ, Chen W (2017) Peroxidase-like activity of nanocrystalline cobalt selenide and its application for uric acid detection. Int J Nanomedicine 12:3295–3302

    Article  CAS  Google Scholar 

  25. Ding H, Yu SB, Wei JS, **ong HM (2016) Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10:484–491

    Article  CAS  Google Scholar 

  26. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86:3391–3395

    Article  CAS  Google Scholar 

  27. Gao LZ, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583

    Article  CAS  Google Scholar 

  28. Nie H, Li MJ, Li QS, Liang S, Tan Y, Sheng L, Shi W, Zhang SXA (2014) Carbon dots with continuously tunable full-color emission and their application in Ratiometric pH sensing. Chem Mater 26:3104–3112

    Article  CAS  Google Scholar 

  29. Chen J, Wei JS, Zhang P, Niu XQ, Zhao W, Zhu ZY, Ding H, **ong HM (2017) Red-emissive carbon dots for fingerprints detection by spray method: coffee ring effect and unquenched fluorescence in drying process. Acs Appl Mater Inter 9:18429–18433

    Article  CAS  Google Scholar 

  30. Chen JH, Pang S, He LL, Nugen SR (2016) Highly sensitive and selective detection of nitrite ions using Fe3O4@SiO2/au magnetic nanoparticles by surface-enhanced Raman spectroscopy. Biosens Bioelectron 85:726–733

    Article  CAS  Google Scholar 

  31. Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, Wu DY, Ren B, Wang ZL, Tian ZQ (2010) Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464:392–395

    Article  CAS  Google Scholar 

  32. Ma X, Wen S, Xue X, Guo Y, ** J, Song W, Zhao B (2018) Controllable synthesis of SERS-active magnetic metal-organic framework-based Nanocatalysts and their application in Photoinduced enhanced catalytic oxidation. ACS Appl Mater Interfaces 10:25726–25736

    Article  CAS  Google Scholar 

  33. He YF, Qi F, Niu XH, Zhang W, Zhang X, Pan J (2018) Uricase-free on-demand colorimetric biosensing of uric acid enabled by integrated CoP nanosheet arrays as a monolithic peroxidase mimic. Anal Chim Acta 1021:113–120

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11774048, 11374046), and the Project from Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education (No. 130028723).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiye Shan.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1914 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, A., Guan, C., Shan, G. et al. A nanocomposite prepared from silver nanoparticles and carbon dots with peroxidase mimicking activity for colorimetric and SERS-based determination of uric acid. Microchim Acta 186, 644 (2019). https://doi.org/10.1007/s00604-019-3759-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3759-0

Keywords

Navigation