Log in

A porous graphene sorbent coated with titanium(IV)-functionalized polydopamine for selective lab-in-syringe extraction of phosphoproteins and phosphopeptides

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel polydopamine coated three-dimensional porous graphene aerogel sorbent carrying immobilized titanium(IV) ions (denoted as Ti4+@PDA@GA) was fabricated without using an organic solvent. The material is shown to be a viable carbon foam type of monolithic sorbent for selective lab-in-syringe enrichment of phosphoproteins and phosphopeptides. The phosphoproteins can be separated from a sample by aspiration and then bind to the sorbent. The analytes then can be dispensed within 5 min. The weight percent of titanium in the monolith typically is 14%, and the absorption capacities for the model proteins β-casein and κ-casein are 1300 and 1345 mg g−1, respectively. The absorption capacities for nonphosphoproteins are much smaller, typically 160 mg g−1 for β-lactoglobulin, 125 mg g−1 for bovine serum, and 4.8 mg g−1 for lysozyme. The results demonstrate that the selectivity for phosphoproteins was excellent on multiple biological samples including standard protein mixtures, spiked human blood serum, and drinking milk. The selective enrichment of phosphopeptides also makes the method a promising tool in phosphoproteomics.

Schematic of a polydopamine coated three-dimensional porous graphene aerogel for immobilization of titanium(IV) ions. The material served as a monolithic sorbent for selective enrichment of phosphopeptides and phosphoproteins from biological samples. The enrichment process can be carried out conveniently using a lab-in-syringe way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hunter T (2000) Signaling—2000 and beyond. Cell 100(1):113–127

    Article  CAS  PubMed  Google Scholar 

  2. Humphrey SJ, Azimifar SB, Mann M (2015) High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics. Nat Biotechnol 33(9):990–995. https://doi.org/10.1038/nbt.3327

    Article  CAS  PubMed  Google Scholar 

  3. Tan CSH, Bodenmiller B, Pasculescu A, Jovanovic M, Hengartner MO, Jørgensen C, Bader GD, Aebersold R, Pawson T, Linding R (2009) Comparative analysis reveals conserved protein phosphorylation networks implicated in multiple diseases. Sci Signal 2 (81):ra39-ra39

  4. Thingholm TE, Jensen ON, Larsen MR (2009) Analytical strategies for phosphoproteomics. Proteomics 9(6):1451–1468

    Article  CAS  PubMed  Google Scholar 

  5. Witze ES, Old WM, Resing KA, Ahn NG (2007) Map** protein post-translational modifications with mass spectrometry. Nat Methods 4(10):798–806

    Article  CAS  PubMed  Google Scholar 

  6. Li X-S, Yuan B-F, Feng Y-Q (2016) Recent advances in phosphopeptide enrichment: strategies and techniques. Trends Anal Chem 78:70–83. https://doi.org/10.1016/j.trac.2015.11.001

    Article  CAS  Google Scholar 

  7. He XM, Chen X, Zhu GT, Wang Q, Yuan BF, Feng YQ (2015) Hydrophilic carboxyl cotton Chelator for titanium(IV) immobilization and its application as novel fibrous sorbent for rapid enrichment of Phosphopeptides. ACS Appl Mater Interfaces 7(31):17356–17362. https://doi.org/10.1021/acsami.5b04572

    Article  CAS  PubMed  Google Scholar 

  8. Ma X, Ding C, Yao X, Jia L (2016) Ethylene glycol assisted preparation of Ti4+-modified polydopamine coated magnetic particles with rough surface for capture of phosphorylated proteins. Anal Chim Acta 929:23–30. https://doi.org/10.1016/j.aca.2016.04.058

    Article  CAS  PubMed  Google Scholar 

  9. Yang X, **a Y (2016) Urea-modified metal-organic framework of type MIL-101(Cr) for the preconcentration of phosphorylated peptides. Microchim Acta 183(7):2235–2240. https://doi.org/10.1007/s00604-016-1860-1

    Article  CAS  Google Scholar 

  10. Zhang H, Ou J, Yao Y, Wang H, Liu Z, Wei Y, Ye M (2017) Facile preparation of titanium(IV)-immobilized hierarchically porous hybrid monoliths. Anal Chem 89(8):4655–4662. https://doi.org/10.1021/acs.analchem.7b00242

    Article  CAS  PubMed  Google Scholar 

  11. Fei R, Zhang T, Huang Y, Hu Y (2017) Highly selective enrichment of phosphorylated proteins by using spore@ Fe3+ microspheres. Anal Chim Acta 986:161–170. https://doi.org/10.1016/j.aca.2017.07.030

    Article  CAS  PubMed  Google Scholar 

  12. **ong Z, Zhang L, Fang C, Zhang Q, Ji Y, Zhang Z, Zhang W, Zou H (2014) Ti4+-immobilized multilayer polysaccharide coated magnetic nanoparticles for highly selective enrichment of phosphopeptides. J Mater Chem B 2(28):4473–4480. https://doi.org/10.1039/c4tb00479e

    Article  CAS  Google Scholar 

  13. Capriotti AL, Cavaliere C, Ferraris F, Gianotti V, Laus M, Piovesana S, Sparnacci K, Zenezini Chiozzi R, Lagana (2018) A new Ti-IMAC magnetic polymeric nanoparticles for phosphopeptide enrichment from complex real samples. Talanta 178:274–281

  14. Kailasa SK, Wu HF (2014) Recent developments in nanoparticle-based MALDI mass spectrometric analysis of phosphoproteomes. Microchim Acta 181(9–10):853–864. https://doi.org/10.1007/s00604-014-1191-z

    Article  CAS  Google Scholar 

  15. Ma W, Zhang F, Li L, Chen S, Qi L, Liu H, Bai Y (2016) Facile synthesis of Mesocrystalline SnO2 Nanorods on reduced graphene oxide sheets: an appealing multifunctional affinity probe for sequential enrichment of endogenous peptides and Phosphopeptides. ACS Appl Mater Interfaces 8(51):35099–35105. https://doi.org/10.1021/acsami.6b14597

    Article  CAS  PubMed  Google Scholar 

  16. S-f R, Y-l G (2006) Carbon nanotubes (2,5-dihydroxybenzoyl hydrazine) derivative as pH adjustable enriching reagent and matrix for MALDI analysis of trace peptides. J Am Soc Mass Spectrom 17(7):1023–1027

    Article  CAS  Google Scholar 

  17. Qin H, Gao P, Wang F, Zhao L, Zhu J, Wang A, Zhang T, Wu Ra, Zou H (2011) Highly efficient extraction of serum peptides by ordered mesoporous carbon. Angew Chem Int Ed 50 (51):12218–12221

  18. Zhang L, Gan Y, Sun H, Yu B, ** X, Zhang R, Zhang W, Zhang L (2017) Magnetic mesoporous carbon composites incorporating hydrophilic metallic nanoparticles for enrichment of phosphopeptides prior to their determination by MALDI-TOF mass spectrometry. Microchim Acta 184(2):547–555. https://doi.org/10.1007/s00604-016-2046-6

    Article  CAS  Google Scholar 

  19. Matsuura K, Saito T, Okazaki T, Ohshima S, Yumura M, Iijima S (2006) Selectivity of water-soluble proteins in single-walled carbon nanotube dispersions. Chem Phys Lett 429(4):497–502

    Article  CAS  Google Scholar 

  20. Han Q, Yang L, Liang Q, Ding M (2017) Three-dimensional hierarchical porous graphene aerogel for efficient adsorption and preconcentration of chemical warfare agents. Carbon 122:556–563

    Article  CAS  Google Scholar 

  21. Han S, Wu D, Li S, Zhang F, Feng X (2014) Porous graphene materials for advanced electrochemical energy storage and conversion devices. Adv Mater 26(6):849–864

    Article  CAS  PubMed  Google Scholar 

  22. Uzzaman A, Shang Z, Qiao Z, Cao CX, **ao H (2018) Graphene and graphene oxide as a solid matrix for extraction of membrane and membrane-associated proteins. Microchim Acta 185(2):123. https://doi.org/10.1007/s00604-017-2658-5

    Article  CAS  Google Scholar 

  23. Sun W, Cao L, Deng Y, Gong S, Shi F, Li G, Sun Z (2013) Direct electrochemistry with enhanced electrocatalytic activity of hemoglobin in hybrid modified electrodes composed of graphene and multi-walled carbon nanotubes. Anal Chim Acta 781:41–47

    Article  CAS  PubMed  Google Scholar 

  24. Wan W, Han Q, Zhang X, **e Y, Sun J, Ding M (2015) Selective enrichment of proteins for MALDI-TOF MS analysis based on molecular imprinting. Chem Commun 51(17):3541–3544. https://doi.org/10.1039/c4cc10205c

    Article  CAS  Google Scholar 

  25. Yan Y, Zheng Z, Deng C, Li Y, Zhang X, Yang P (2013) Hydrophilic polydopamine-coated graphene for metal ion immobilization as a novel immobilized metal ion affinity chromatography platform for phosphoproteome analysis. Anal Chem 85(18):8483–8487. https://doi.org/10.1021/ac401668e

    Article  CAS  PubMed  Google Scholar 

  26. Gao H, Sun Y, Zhou J, Xu R, Duan H (2013) Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification. ACS Appl Mater Interfaces 5(2):425–432

    Article  CAS  PubMed  Google Scholar 

  27. Wang X, Deng C (2015) Preparation of magnetic graphene@polydopamine@Zr-MOF material for the extraction and analysis of bisphenols in water samples. Talanta 144:1329–1335

    Article  CAS  PubMed  Google Scholar 

  28. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849):426–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Moser J, Punchihewa S, Infelta PP, Graetzel M (1991) Surface complexation of colloidal semiconductors strongly enhances interfacial electron-transfer rates. Langmuir 7(12):3012–3018

    Article  CAS  Google Scholar 

  30. Zhou H, Ye M, Dong J, Corradini E, Cristobal A, Heck AJ, Zou H, Mohammed S (2013) Robust phosphoproteome enrichment using monodisperse microsphere-based immobilized titanium(IV) ion affinity chromatography. Nat Protoc 8(3):461–480

    Article  CAS  PubMed  Google Scholar 

  31. Han Q, Liang Q, Zhang X, Yang L, Ding M (2016) Graphene aerogel based monolith for effective solid-phase extraction of trace environmental pollutants from water samples. J Chromatogr A 1447:39–46. https://doi.org/10.1016/j.chroma.2016.04.032

    Article  CAS  PubMed  Google Scholar 

  32. Liu W, Zheng J, Li S, Wang R, Lin Z, Yang H (2015) Aluminium glycinate functionalized silica nanoparticles for highly specific separation of phosphoproteins. J Mater Chem B 3(31):6528–6535. https://doi.org/10.1039/c5tb01055a

    Article  CAS  Google Scholar 

  33. Deng Q, Wu J, Chen Y, Zhang Z, Wang Y, Fang G, Wang S, Zhang Y (2014) Guanidinium functionalized superparamagnetic silica spheres for selective enrichment of phosphopeptides and intact phosphoproteins from complex mixtures. J Mater Chem B 2(8):1048–1058. https://doi.org/10.1039/c3tb21540g

    Article  CAS  Google Scholar 

  34. Ma X, Jia L (2016) Polydopamine assisted preparation of Ti4+-decorated magnetic particles for selective and rapid adsorption of phosphorylated proteins. J Chem Technol Biot 91(4):892–900. https://doi.org/10.1002/jctb.4654

    Article  CAS  Google Scholar 

  35. Cheng G, Wang ZG, Liu YL, Zhang JL, Sun DH, Ni JZ (2013) Magnetic affinity microspheres with meso−/macroporous shells for selective enrichment and fast separation of phosphorylated biomolecules. ACS Appl Mater Interfaces 5(8):3182–3190

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China [grant numbers 21575076, 21621003]; the National Key Research and Development Program of China [grant numbers 2016YFA0203101,2017YFC0906902]; and the Bei**g Municipality Science and Technology Program [grant numbers D161100002116001].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qionglin Liang or Mingyu Ding.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 1.39 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, S., Wang, J., Han, Q. et al. A porous graphene sorbent coated with titanium(IV)-functionalized polydopamine for selective lab-in-syringe extraction of phosphoproteins and phosphopeptides. Microchim Acta 185, 316 (2018). https://doi.org/10.1007/s00604-018-2846-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2846-y

Keywords

Navigation