Log in

Exonuclease-assisted multicolor aptasensor for visual detection of ochratoxin A based on G-quadruplex-hemin DNAzyme-mediated etching of gold nanorod

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An exonuclease-assisted multicolor aptasensor was developed for the visual detection of ochratoxin A (OTA). It is based on the etching of gold nanorods (AuNRs) mediated by a G-quadruplex-hemin DNAzyme. A DNA sequence (AG4-OTA) was designed that comprises a hemin aptamer and an OTA aptamer. OTA binds to AG4-OTA to form an antiparallel G-quadruplex, which halts its digestion by exonuclease I (Exo I) from the 3′-end of AG4-OTA. Thus, the retained hemin aptamer can bind to hemin to form a G-quadruplex-hemin DNAzyme. This DNAzyme has peroxidase-like activity that catalyzes the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) by H2O2 to produce its diimine derivative (TMB2+) in acidic solution. TMB2+ can etch the AuNRs by oxidizing Au(0) into Au(I). This results in the generation of rainbow-like colors and provides a multicolor platform for the visual detection of OTA. The assay is based on the use of a single isolated aptamer and possesses obvious advantages such as multi-color visual inspection, relatively high sensitivity and accuracy. It can be used to detect as little as 30 nM concentrations of OTA by visual observation and even 10 nM concentrations by spectrophotometry. The method was successfully applied to the determination of OTA in spiked beer where it gave recoveries of 101–108%, with a relative standard deviation (RSD, n = 5) of <5%.

Schematic of an exonuclease-assisted multicolor bioassay based on the G-quadruplex-hemin DNAzyme-mediated etching of gold nanorods (AuNRs). It enables visual detection of ochratoxin A (OTA) with a detection limit of 30 nM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amézqueta S, González-Peñas E, Murillo-Arbizu M, de Cerain AL (2009) Ochratoxin A decontamination: A review. Food Control 20:326–333

    Article  CAS  Google Scholar 

  2. Malir F, Ostry V, Novotna E (2013) Toxicity of the mycotoxin ochratoxin A in the light of recent data. Toxin Rev 32:19–33

    Article  CAS  Google Scholar 

  3. Sorrenti V, Giacomo CD, Acquaviva R, Barbagallo I, Bognanno M, Galvano F (2013) Toxicity of ochratoxin A and its modulation by antioxidants: a review. Toxins 5:1742–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pena A, Cerejo F, Lino C, Silveira I (2005) Determination of ochratoxin A in Portuguese rice samples by high performance liquid chromatography with fluorescence detection. Anal Bioanal Chem 382:1288–1293

    Article  CAS  PubMed  Google Scholar 

  5. Solfrizzo M, Gambacorta L, Lattanzio VM, Powers S, Visconti A (2011) Simultaneous LC–MS/MS determination of aflatoxin M1, ochratoxin A, deoxynivalenol, de-epoxydeoxynivalenol, α and β-zearalenols and fumonisin B1 in urine as a multi-biomarker method to assess exposure to mycotoxins. Anal Bioanal Chem 401:2831–2841

    Article  CAS  PubMed  Google Scholar 

  6. Adányi N, Levkovets I, Rodriguez-Gil S, Ronald A, Váradi M, Szendrő I (2007) Development of immunosensor based on OWLS technique for determining Aflatoxin B1 and Ochratoxin A. Biosens Bioelectron 22:797–802

    Article  CAS  PubMed  Google Scholar 

  7. Fang X, Tan W (2010) Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Acc Chem Res 43:48–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Strehlitz B, Nikolaus N, Stoltenburg R (2008) Protein detection with aptamer biosensors. Sensors 8:4296–4307

    Article  CAS  PubMed  Google Scholar 

  9. Cerchia L, De Franciscis V (2010) Targeting cancer cells with nucleic acid aptamers. Trends Biotechnol 28:517–525

    Article  CAS  PubMed  Google Scholar 

  10. Cruz-Aguado JA, Penner G (2008) Determination of ochratoxin A with a DNA aptamer. J Agric Food Chem 56:10456–10461

    Article  CAS  PubMed  Google Scholar 

  11. Bianco M, Sonato A, De Girolamo A, Pascale M, Romanato F, Rinaldi R, Arima V (2017) An aptamer-based SPR-polarization platform for high sensitive OTA detection. Sensors Actuators B Chem 241:314–320

    Article  CAS  Google Scholar 

  12. Wang C, Qian J, Wang K, Yang X, Liu Q, Hao N, Wang C, Dong X, Huang X (2016) Colorimetric aptasensing of ochratoxin A using Au@ Fe 3 O 4 nanoparticles as signal indicator and magnetic separator. Biosens Bioelectron 77:1183–1191

    Article  CAS  PubMed  Google Scholar 

  13. Wang C, Qian J, An K, Huang X, Zhao L, Liu Q, Hao N, Wang K (2017) Magneto-controlled aptasensor for simultaneous electrochemical detection of dual mycotoxins in maize using metal sulfide quantum dots coated silica as labels. Biosens Bioelectron 89:802–809

    Article  CAS  PubMed  Google Scholar 

  14. Wang S, Zhang Y, Pang G, Zhang Y, Guo S (2017) Tuning the aggregation/disaggregation behavior of graphene quantum dots by structure-switching aptamer for high-sensitivity fluorescent Ochratoxin A sensor. Anal Chem 89:1704–1709

    Article  CAS  PubMed  Google Scholar 

  15. Wu H, Liu R, Kang X, Lian C, Lv L, Guo Z (2018) Fluorometric aptamer assay for ochratoxin A based on the use of single walled carbon nanohorns and exonuclease III-aided amplification. Microchim Acta 185:27

    Article  CAS  Google Scholar 

  16. Zhang D, Wang W, Dong Q, Huang Y, Wen D, Mu Y, Yuan Y (2018) Colorimetric detection of genetically modified organisms based on exonuclease III -assisted target recycling and hemin/G-quadruplex DNAzyme amplification. Microchim Acta 185:75

    Article  CAS  Google Scholar 

  17. Sang Y, Xu Y, Xu L, Cheng W, Li X, Wu J (2017) Colorimetric and visual determination of micro RNA via cycling signal amplification using T7 exonuclease. Microchim Acta 184:2465–2471

    Article  CAS  Google Scholar 

  18. Nasir M, Nawaz MH, Latif U, Yaqub M, Hayat A, Rahim A (2017) An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays. Microchim Acta 184:323–342

    Article  CAS  Google Scholar 

  19. Zong C, Zhang D, Yang H, Wang S, Chu M, Li P (2017) Chemiluminescence immunoassay for cardiac troponin T by using silver nanoparticles functionalized with hemin/G-quadruplex DNAzyme on a glass chip array. Microchim Acta 184:3197–3204

    Article  CAS  Google Scholar 

  20. Ye X, ** L, Caglayan H, Chen J, **ng G, Zheng C, Doan-Nguyen V, Kang Y, Engheta N, Kagan CR (2012) Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano 6:2804–2817

    Article  CAS  PubMed  Google Scholar 

  21. Lin Y, Zhao M, Guo Y, Ma X, Luo F, Guo L, Qiu B, Chen G, Lin Z (2016) Multicolor colormetric biosensor for the determination of glucose based on the etching of gold nanorods. Sci Rep 6:37879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang Z, Chen Z, Cheng F, Zhang Y, Chen L (2017) Highly sensitive on-site detection of glucose in human urine with naked eye based on enzymatic-like reaction mediated etching of gold nanorods. Biosens Bioelectron 89:932–936

    Article  CAS  PubMed  Google Scholar 

  23. Chen Z, Liu R, Wang S, Qu C, Chen L, Wang Z (2013) Colorimetric sensing of copper (II) based on catalytic etching of gold nanorods. RSC Adv 3:13318–13323

    Article  CAS  Google Scholar 

  24. Ma X, Lin Y, Guo L, Qiu B, Chen G, Yang HH, Lin Z (2017) A universal multicolor immunosensor for semiquantitative visual detection of biomarkers with the naked eyes. Biosens Bioelectron 87:122–128

    Article  CAS  PubMed  Google Scholar 

  25. Nikoobakht B, El-sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962

    Article  CAS  Google Scholar 

  26. Orendorff CJ, Murphy CJ (2006) Quantitation of metal content in the silver-assisted growth of gold nanorods. J Phys Chem B 110:3990–3994

    Article  CAS  PubMed  Google Scholar 

  27. Beltran E, Ibáñez M, Sancho JV, Hernandez F (2009) Determination of mycotoxins in different food commodities by ultra-high-pressure liquid chromatography coupled to triple quadrupole mass spectrometry. Rapid Commun Mass Spectrom 23:1801–1809

    Article  CAS  PubMed  Google Scholar 

  28. Rodríguez-Fernández J, Pérez-Juste J, Mulvaney P, Liz-Marzán LM (2005) Spatially-directed oxidation of gold nanoparticles by Au(III)-CTAB complexes. J Phys Chem B 109:14257–14261

    Article  CAS  PubMed  Google Scholar 

  29. Cao GX, Wu XM, Dong YM, Li ZJ, Wang GL (2016) Colorimetric determination of melamine based on the reversal of the mercury(II) induced inhibition of the light-triggered oxidase-like activity of gold nanoclusters. Microchim Acta 183:441–448

    Article  CAS  Google Scholar 

  30. Tsung CK, Kou X, Shi Q, Zhang J, Yeung MH, Wang JF, Stucky GD (2006) Selective shortening of single-crystalline gold nanorods by mild oxidation. J Am Chem Soc 128:5352–5353

    Article  CAS  PubMed  Google Scholar 

  31. Odhav B, Naicker V (2002) Mycotoxins in South African traditionally brewed beers. Food Addit Contam 19:55–61

    Article  CAS  PubMed  Google Scholar 

  32. Lin C, Zheng H, Sun M, Guo Y, Luo F, Guo L, Qiu B, Lin Z, Chen G (2018) Highly sensitive colorimetric aptasensor for ochratoxin A detection based on enzyme-encapsulated liposome. Anal Chim Acta 1002:90–96

    Article  CAS  PubMed  Google Scholar 

  33. Wang C, Dong X, Liu Q, Wang K (2015) Label-free colorimetric aptasensor for sensitive detection of ochratoxin A utilizing hybridization chain reaction. Anal Chim Acta 860:83–88

    Article  CAS  PubMed  Google Scholar 

  34. Yang C, Lates V, Prieto-Simón B, Marty JL, Yang X (2012) Aptamer-DNAzyme hairpins for biosensing of Ochratoxin A. Biosens Bioelectron 32:208–212

    Article  CAS  PubMed  Google Scholar 

  35. Yang C, Lates V, Prieto-Simón B, Marty JL, Yang X (2013) Rapid high-throughput analysis of ochratoxin A by the self-assembly of DNAzyme–aptamer conjugates in wine. Talanta 116:520–526

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the National Key Research and Development Program of China (2017YFC1600500), NSFC (21505020, 21677034) and the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT-15R11) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zongwen Wang or FengFu Fu.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 561 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Lin, Y., Wang, X. et al. Exonuclease-assisted multicolor aptasensor for visual detection of ochratoxin A based on G-quadruplex-hemin DNAzyme-mediated etching of gold nanorod. Microchim Acta 185, 259 (2018). https://doi.org/10.1007/s00604-018-2811-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2811-9

Keywords

Navigation