Log in

Fluorometric competitive immunoassay for chlorpyrifos using rhodamine-modified gold nanoparticles as a label

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A new kind of labelled antibody was synthesized by modifying gold nanoparticles (AuNPs) with the fluorophore rhodamine B isothiocyanate (RBITC) and a secondary antibody (IgG). The conjugate thus obtained was used in a competitive sandwich assay with a turn-on signal change. It was designed to detect the organophosphorus pesticide chlorpyrifos. The fluorescence of the RBITC-labeled gold immunoprobe with emission at 575 nm and excitation at 556 nm is almost completely quenched. If, however, cysteamine is added, the fluorophore is released from the labeled secondary antibody and fluorescence increases in accordance with the quantity of secondary antibody bound to the sandwich. This assay was applied to determine chlorpyrifos in dried tangerine peels. The detection results were also independently confirmed by LC-MS/MS. The method allows the concentrations of chlorpyrifos to be quantified down to 4.9 ng·mL−1, which is equivalent to 61 μg·kg−1 in dried tangerine peels. In our perception, this approach has a wide potential to be applied in the determination of numerous analytes for which antibodies are available.

A new kind of labelled antibody was synthesized by modifying gold nanoparticles with fluorophore rhodamine B isothiocyanate (RBITC) and a secondary antibody (IgG). The conjugate was used in fluoroimmunoassay with a turn-on signal change. The method was designed to detect the organophosphorus pesticide chlorpyrifos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nakano VE, Kussumi TA, Lemes VRR, Kimura IA, Rocha SB, Alaburda J, Oliveira MCC, Ribeiro RA, Faria ALR, Waldhelm KC (2016) Evaluation of pesticide residues in oranges from São Paulo. Brazil Food Sci Technol (Campinas) 36:40–48

    Article  Google Scholar 

  2. Liu Y, Li S, Ni Z, Qu M, Zhong D, Ye C, Tang F (2016) Pesticides in persimmons, jujubes and soil from China: residue levels, risk assessment and relationship between fruits and soils. Sci Total Environ 542:620–628

    Article  CAS  Google Scholar 

  3. Sadowska-Rociek A, Surma M, Cieślik E (2013) Application of QuEChERS method for simultaneous determination of pesticide residues and PAHs in fresh herbs. Bull Environ Contam Toxicol 90(4):508–513

    Article  CAS  Google Scholar 

  4. Aragay G, Pino F, Merkoçi A (2012) Nanomaterials for sensing and destroying pesticides. Chem Rev 112(10):5317–5338

    Article  CAS  Google Scholar 

  5. Arduini F, Cinti S, Scognamiglio V, Moscone D (2016) Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis. Microchim Acta 183(7):2063–2083

    Article  CAS  Google Scholar 

  6. Wang X, Cao Y, Chen D, Zhao G, Sun X (2014) An amperometric immunosensor based on graphene composite film and protein a for chlorpyrifos detection. Sensors Trans 178(9):47–55

    Google Scholar 

  7. Sun, Z, Wang, W, Wen, H, Gan, C, Lei, H and Liu, Y (2015) Sensitive electrochemical immunoassay for chlorpyrifos by using flake-like Fe3O4 modified carbon nanotubes as the enhanced multienzyme label. Anal Chim Acta 899 (Supplement C): 91–99

  8. Xu ZL, Wang Q, Lei HT, Eremin SA, Shen YD, Wang H, Beier RC, Yang JY, Maksimova KA, Sun YM (2011) A simple, rapid and high-throughput fluorescence polarization immunoassay for simultaneous detection of organophosphorus pesticides in vegetable and environmental water samples. Anal Chim Acta 708(1–2):123–129

    Article  CAS  Google Scholar 

  9. Beloglazova NV, Speranskaya ES, Wu A, Wang Z, Sanders M, Goftman VV, Zhang D, Goryacheva IY, De Saeger S (2014) Novel multiplex fluorescent immunoassays based on quantum dot nanolabels for mycotoxins determination. Biosens Bioelectron 62:59–65

    Article  CAS  Google Scholar 

  10. Goldman, ER, Anderson, GP, Lebedev, N, Lingerfelt, BM, Winter, PT, Patterson, CH, Jr. and Mauro, JM (2003) Analysis of aqueous 2,4,6-trinitrotoluene (TNT) using a fluorescent displacement immunoassay. Anal Bioanal Chem 375(4): 471–475

  11. Petrou PS, Mastichiadis C, Christofidis I, Kakabakos SE (2007) Glycerin suppression of fluorescence self-quenching and improvement of heterogeneous Fluoroimmunoassay sensitivity. Anal Chem 79(2):647–653

    Article  CAS  Google Scholar 

  12. Tang D, Yu Y, Niessner R, Miro M, Knopp D (2010) Magnetic bead-based fluorescence immunoassay for aflatoxin B1 in food using biofunctionalized rhodamine B-doped silica nanoparticles. Analyst 135(10):2661–2667

    Article  CAS  Google Scholar 

  13. Feng J, Shan G, Maquieira A, Koivunen ME, Guo B, Hammock BD, Kennedy IM (2003) Functionalized europium oxide nanoparticles used as a fluorescent label in an immunoassay for atrazine. Anal Chem 75(19):5282–5286

    Article  CAS  Google Scholar 

  14. Viger ML, Live LS, Therrien OD, Boudreau D (2008) Reduction of self-quenching in fluorescent silica-coated silver nanoparticles. Plasmonics 3(1):33–40

    Article  CAS  Google Scholar 

  15. Sharma P, Gandhi S, Chopra A, Sekar N, Raman Suri C (2010) Fluoroimmunoassay based on suppression of fluorescence self-quenching for ultra-sensitive detection of herbicide diuron. Anal Chim Acta 676(1–2):87–92

    Article  CAS  Google Scholar 

  16. Wang Z, Heon Lee J, Lu Y (2008) Highly sensitive "turn-on" fluorescent sensor for Hg2+ in aqueous solution based on structure-switching DNA. Chem Commun (Camb) 45:6005–6007

    Article  Google Scholar 

  17. Lin B, Yu Y, Li R, Cao Y, Guo M (2016) Turn-on sensor for quantification and imaging of acetamiprid residues based on quantum dots functionalized with aptamer. Sensors Actuators B Chem 229:100–109

    Article  CAS  Google Scholar 

  18. Zhang J, Wang J, Yang L, Liu B, Guan G, Jiang C, Zhang Z (2014) Ligand replacement induced chemiluminescence for selective detection of an organophosphorus pesticide using bifunctional au-Fe3O4 dumbbell-like nanoparticles. Chem Commun 50(100):15870–15873

    Article  CAS  Google Scholar 

  19. Zhang K, Mei Q, Guan G, Liu B, Wang S, Zhang Z (2010) Ligand replacement-induced fluorescence switch of quantum dots for ultrasensitive detection of Organophosphorothioate pesticides. Anal Chem 82(22):9579–9586

    Article  CAS  Google Scholar 

  20. Wang Q, ** Y, Fu X, Ma M, Cai Z (2016) A "turn-on-off-on" fluorescence switch based on quantum dots and gold nanoparticles for discriminative detection of ovotransferrin. Talanta 150:407–414

    Article  CAS  Google Scholar 

  21. Zhu J, Chang H, Li JJ, Li X, Zhao JW (2017) Dual-mode melamine detection based on gold nanoparticles aggregation-induced fluorescence “turn-on” and “turn-off” of CdTe quantum dots. Sensors Actuators B Chem 239:906–915

    Article  CAS  Google Scholar 

  22. Maxwell DJ, Taylor JR, Nie S (2002) Self-assembled nanoparticle probes for recognition and detection of biomolecules. J Am Chem Soc 124(32):9606–9612

    Article  CAS  Google Scholar 

  23. Dubertret B, Calame M, Libchaber AJ (2001) Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat Biotechnol 19(4):365–370

    Article  CAS  Google Scholar 

  24. Shang L, ** L, Dong S (2009) Sensitive turn-on fluorescent detection of cyanide based on the dissolution of fluorophore functionalized gold nanoparticles. Chem Commun (Camb) 21:3077–3079

    Article  Google Scholar 

  25. Liu D, Wang S, Swierczewska M, Huang X, Bhirde AA, Sun J, Wang Z, Yang M, Jiang X, Chen X (2012) Highly robust, recyclable displacement assay for mercuric ions in aqueous solutions and living cells. ACS Nano 6(12):10999–11008

    Article  CAS  Google Scholar 

  26. Dou X, Chu X, Kong W, Yang Y, Yang M (2015) Carbon nanotube-based QuEChERS extraction and enhanced product ion scan-assisted confirmation of multi-pesticide residue in dried tangerine peel. RSC Adv 5(105):86163–86171

    Article  CAS  Google Scholar 

  27. Wang, J, Li, H, Zou, H, Wang, C, Zhang, H, Mano, JF and Song, W (2017) Flexible method for fabricating protein patterns on superhydrophobic platforms controlled by magnetic field. Biomater Sci 5(3):408–411

  28. Shahabi S, Treccani L, Dringen R, Rezwan K (2015) Dual fluorophore doped silica nanoparticles for cellular localization studies in multiple stained cells. Acta Biomater 14:208–216

    Article  CAS  Google Scholar 

  29. Qian X, Emory SR, Nie S (2012) Anchoring molecular Chromophores to colloidal gold Nanocrystals: surface-enhanced Raman evidence for strong electronic coupling and irreversible structural locking. J Am Chem Soc 134(4):2000–2003

    Article  CAS  Google Scholar 

  30. Qian X, Peng X-H, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26(1):83–90

    Article  CAS  Google Scholar 

  31. Liu D, Huang X, Wang Z, ** A, Sun X, Zhu L, Wang F, Ma Y, Niu G, Hight Walker AR, Chen X (2013) Gold nanoparticle-based Activatable probe for sensing ultralow levels of prostate-specific antigen. ACS Nano 7(6):5568–5576

    Article  CAS  Google Scholar 

  32. Manju S, Sreenivasan K (2011) Detection of glucose in synthetic tear fluid using dually functionalized gold nanoparticles. Talanta 85(5):2643–2649

    Article  CAS  Google Scholar 

  33. Ray PC, Darbha GK, Ray A, Walker J, Hardy W (2007) Gold nanoparticle based FRET for DNA detection. Plasmonics 2(4):173–183

    Article  CAS  Google Scholar 

  34. Angioni A, Dedola F, Garau A, Sarais G, Cabras P, Caboni P (2011) Chlorpyrifos residues levels in fruits and vegetables after field treatment. J Environ Sci Health B 46(6):544–549

    CAS  Google Scholar 

  35. Golge O, Kabak B (2015) Determination of 115 pesticide residues in oranges by high-performance liquid chromatography–triple-quadrupole mass spectrometry in combination with QuEChERS method. J Food Compos Anal 41:86–97

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by National Natural Science Foundation of China (81573595, 81703699), National Project for Standardization of Chinese Materia Medica (ZYBZH-Y-JIN-34), CAMS Innovation Fund for Medical Sciences (2016-I2M-1-012, 2016-I2M-3-010, 2017-I2M-1-013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meihua Yang.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

This manuscript has been thoroughly edited by a native English speaker from an editing company.

Electronic supplementary material

ESM 1

(DOCX 2108 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, X., Zhang, L., Liu, C. et al. Fluorometric competitive immunoassay for chlorpyrifos using rhodamine-modified gold nanoparticles as a label. Microchim Acta 185, 41 (2018). https://doi.org/10.1007/s00604-017-2561-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-017-2561-0

Keywords

Navigation