Log in

Solid-phase extraction of DNA by using a composite prepared from multiwalled carbon nanotubes, chitosan, Fe3O4 and a poly(ethylene glycol)-based deep eutectic solvent

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A magnetically responsive composite was prepared for improved solid-phase extraction of salmon sperm DNA sodium salt. It consists of chitosan-modified Fe3O4-magnetized multi-walled carbon nanotubes coated with a poly(ethylene glycol) based deep eutectic solvent. The sorbent was characterized by X-ray diffraction, vibrating sample magnetometry, Fourier transform infrared spectrometry, thermogravimetric analysis and transmission electron microscopy. The effects of the concentration of DNA, ionic strength, pH value, temperature and extraction time on extraction performance were optimized. Compared to plain Fe3O4, the new sorbent displays a superior DNA extraction capacity of 178 mg·g−1. It also displays favorable selectivity for DNA over bovine hemoglobin. Regeneration studies show that (a) 79% of DNA can be eluted from loaded sorbent by using 1 M NaCl, and that (b) the conformation of DNA remains unchanged as evidenced by CD spectra. The sorbent can be recycled six times without significant loss of extraction capacity. It was applied to the extraction of DNA from bovine whole blood prior to DNA quantitation by agarose gel electrophoresis. The results show this new sorbent to be a viable material for separation of DNA that excels by its low cost, high loading capacity and ease of regeneration.

Chitosan (CS)-modified magnetic multi-walled carbon nanotubes were coated with a poly(ethylene glycol)-based deep eutectic solvent (DES) to obtain a new material (referred to as DES-mCS/MWCNTs) for solid-phase extraction of DNA. It exhibits excellent magnetic response, high loading capacity and good reusability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Demeke T, Jenkins GR (2010) Influence of DNA extraction methods, PCR inhibitors and quantification methods on real-time PCR assay of biotechnology-derived traits. Anal Bioanal Chem 396:1977–1990. doi:10.1007/s00216-009-3150-9

    Article  CAS  Google Scholar 

  2. Aziz-Zanjani MO, Mehdinia A (2014) A review on procedures for the preparation of coatings for solid phase microextraction. Microchim Acta 181:1169–1190. doi:10.1007/s00604-014-1265-y

    Article  CAS  Google Scholar 

  3. Hu LL, Hu B, Shen LM, Zhang DD, Chen XW, Wang JH (2015) Polyethyleneimine-iron phosphate nanocomposite as a promising adsorbent for the isolation of DNA. Talanta 132:857–863. doi:10.1016/j.talanta.2014.10.047

    Article  CAS  Google Scholar 

  4. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. doi:10.1038/354056a0

    Article  CAS  Google Scholar 

  5. Yang SX, Wang LY, Zhang XD, Yang WJ, Song GL (2015) Enhanced adsorption of Congo red dye by functionalized carbon nanotube/mixed metal oxides nanocomposites derived from layered double hydroxide precursor. Chem Eng J 275:315–321. doi:10.1016/j.cej.2015.04.049

    Article  CAS  Google Scholar 

  6. Chen J, Wang YZ, Huang YH, Xu KJ, Li N, Wen Q, Zhou YG (2015) Magnetic multiwall carbon nanotubes modified with dual hydroxy functional ionic liquid for the solid-phase extraction of protein. Analyst 140:3474–3483. doi:10.1039/c5an00201j

    Article  CAS  Google Scholar 

  7. Kumar P, Sengupta A, Deb AKS, Dasgupta K, Ali SM (2016) Sorption behaviour of Pu4+ and PuO2 2+ on amido amine-functionalized carbon nanotubes: experimental and computational study. RSC Adv 6:107011–107020. doi:10.1039/C6RA24184K

    Article  CAS  Google Scholar 

  8. Fei B, Lu HF, Hu ZG, **n JH (2006) Solubilization, purification and functionalization of carbon nanotubes using polyoxometalate. Nanotechnology 17:1589. doi:10.1088/0957-4484/17/6/010

    Article  CAS  Google Scholar 

  9. Seligra PG, Lamanna M, Famá L (2015) Promising PLA-functionalized MWCNT composites to use in nanotechnology. Polym Compos 37:3066–3072. doi:10.1002/pc.23504

    Article  Google Scholar 

  10. Li LL, Luo CN, Li XJ, Duan HM, Wang XJ (2014) Preparation of magnetic ionic liquid/chitosan/graphene oxide composite and application for water treatment. Int J Biol Macromol 66:172–178. doi:10.1016/j.ijbiomac.2014.02.031

    Article  CAS  Google Scholar 

  11. Zhang LF, **a W, Liu X, Zhang WQ (2015) Synthesis of titanium cross-linked chitosan composite for efficient adsorption and detoxification of hexavalent chromium from water. J Mater Chem A 3:331–340. doi:10.1039/c4ta05194g

    Article  CAS  Google Scholar 

  12. Rungrotmongkol T, Arsawang U, Iamsamai C, Vongachariya A, Dubas ST, Ruktanonchai U, Soottitantawat A, Hannongbua S (2011) Increased dispersion and solubility of carbon nanotubes noncovalently modified by the polysaccharide biopolymer, chitosan: MD simulations. Chem Phys Lett 507:134–137. doi:10.1016/j.cplett.2011.03.066

    Article  CAS  Google Scholar 

  13. Chatterjee S, Lee MW, Woo SH (2010) Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes. Bioresour Technol 101:1800–1806. doi:10.1016/j.biortech.2009.10.051

    Article  CAS  Google Scholar 

  14. Li CY, Yang KQ, Zhang YY, Tang H, Yan F, Tan L, **e QJ, Yao SZ (2011) Highly biocompatible multi-walled carbon nanotube-chitosan nanoparticle hybrids as protein carriers. Acta Biomater 7:3070–3077. doi:10.1016/j.actbio.2011.05.005

    Article  CAS  Google Scholar 

  15. Zhan YK, Pan LK, Nie CY, Li HB, Sun Z (2011) Carbon nanotube–chitosan composite electrodes for electrochemical removal of Cu(II) ions. J Alloys Compd 509:5667–5671. doi:10.1016/j.jallcom.2011.02.118

    Article  CAS  Google Scholar 

  16. Xu KJ, Wang YZ, Huang YH, Li N, Wen Q (2015) A green deep eutectic solvent-based aqueous two-phase system for protein extracting. Anal Chim Acta 864:9–20. doi:10.1016/j.aca.2015.01.026

    Article  CAS  Google Scholar 

  17. Zhang HM, Wang YZ, Xu KJ, Li N, Wen Q, Yang Q, Zhou YG (2016) Ternary and binary deep eutectic solvents as a novel extraction medium for protein partitioning. Anal Methods 8:8196–8207. doi:10.1039/c6ay01860b

    Article  CAS  Google Scholar 

  18. Li N, Wang YZ, Xu KJ, Wen Q, Ding XQ, Zhang HM, Yang Q (2016) High-performance of deep eutectic solvent based aqueous bi-phasic systems for the extraction of DNA. RSC Adv 6:84406–84414. doi:10.1039/c6ra17689e

    Article  CAS  Google Scholar 

  19. Dai YT, Witkamp GJ, Verpoorte R, Choi YH (2013) Natural deep eutectic solvents as new potential media for green technology. Anal Chim Acta 766:61–68. doi:10.1016/j.aca.2012.12.019

    Article  CAS  Google Scholar 

  20. Duan L, Dou LL, Guo L, Li P, Liu EH (2016) Comprehensive evaluation of deep eutectic solvents in extraction of bioactive natural products. ACS Sustain Chem Eng 4:2405–2411. doi:10.1021/acssuschemeng.6b00091

    Article  CAS  Google Scholar 

  21. Huang YH, Wang YZ, Pan Q, Wang Y, Ding XQ, Xu KJ, Li N, Wen Q (2015) Magnetic graphene oxide modified with choline chloride-based deep eutectic solvent for the solid-phase extraction of protein. Anal Chim Acta 877:90–99. doi:10.1016/j.aca.2015.03.048

    Article  CAS  Google Scholar 

  22. Liu YJ, Wang YZ, Dai QZ, Zhou YG (2016) Magnetic deep eutectic solvents molecularly imprinted polymers for the selective recognition and separation of protein. Anal Chim Acta 936:168–178. doi:10.1016/j.aca.2016.07.003

    Article  CAS  Google Scholar 

  23. Zhu HY, Fu YQ, Jiang R, Yao J, Liu L, Chen YW, **ao L, Zeng G (2013) Preparation, characterization and adsorption properties of chitosan modified magnetic graphitized multi-walled carbon nanotubes for highly effective removal of a carcinogenic dye from aqueous solution. Appl Surf Sci 285:865–873. doi:10.1016/j.apsusc.2013.09.003

    Article  CAS  Google Scholar 

  24. Wang S, Zhai YY, Gao Q, Luo WJ, **a H, Zhou CG (2013) Highly efficient removal of acid red 18 from aqueous solution by magnetically retrievable chitosan/carbon nanotube: batch study, isotherms, kinetics, and thermodynamics. J Chem Eng Data 59:39–51. doi:10.1021/je400700c

    Article  Google Scholar 

  25. Wang HY, Wang JJ, Zhang SB (2011) Binding Gibbs energy of ionic liquids to calf thymus DNA: a fluorescence spectroscopy study. Phys Chem Chem Phys 13:3906–3910. doi:10.1039/C0CP01815E

    Article  CAS  Google Scholar 

  26. Cao MW, Deng ML, Wang XL, Wang YL (2008) Decompaction of cationic gemini surfactant-induced DNA condensates by β-cyclodextrin or anionic surfactant. J Phys Chem B 112:13648–13654. doi:10.1021/jp803244f

    Article  CAS  Google Scholar 

  27. Jumbri K, Ahmad H, Abdulmalek E, Rahman MBA (2016) Binding energy and biophysical properties of ionic liquid-DNA complex: understanding the role of hydrophobic interactions. J Mol Liq 223:1197–1203. doi:10.1016/j.molliq.2016.09.040

    Article  CAS  Google Scholar 

  28. Liu JW (2012) Adsorption of DNA onto gold nanoparticles and graphene oxide: surface science and applications. Phys Chem Chem Phys 14:10485–10496. doi:10.1039/c2cp41186e

    Article  CAS  Google Scholar 

  29. Li X, Zhang JX, Gu HC (2011) Adsorption and desorption behaviors of DNA with magnetic mesoporous silica nanoparticles. Langmuir 27:6099–6106. doi:10.1021/la104653s

    Article  CAS  Google Scholar 

  30. Chen XW, Mao QX, Liu JW, Wang JH (2012) Isolation/separation of plasmid DNA using hemoglobin modified magnetic nanocomposites as solid-phase adsorbent. Talanta 100:107–112. doi:10.1016/j.talanta.2012.07.095

    Article  CAS  Google Scholar 

  31. Ghaemi M, Absalan G (2014) Study on the adsorption of DNA on Fe3O4 nanoparticles and on ionic liquid-modified Fe3O4 nanoparticles. Microchim Acta 181:45–53. doi:10.1007/s00604-013-1040-5

    Article  CAS  Google Scholar 

  32. Kose K (2016) Nucleotide incorporated magnetic microparticles for isolation of DNA. Process Biochem 51:1644–1649. doi:10.1016/j.procbio.2016.07.021

    Article  CAS  Google Scholar 

  33. Tang RH, Yang H, Choi JR, Gong Y, Hu J, Wen T, Li XJ, Xu B, Mei QB, Xu F (2017) Paper-based device with on-chip reagent storage for rapid extraction of DNA from biological samples. Microchim Acta 184:2141–2150. doi:10.1007/s00604-017-2225-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the financial supports by the National Natural Science Foundation of China (No.21375035; No.21675048) and the Foundation for Innovative Research Groups of NSFC (Grant 21521063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhi Wang.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 22.7 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, K., Wang, Y., Zhang, H. et al. Solid-phase extraction of DNA by using a composite prepared from multiwalled carbon nanotubes, chitosan, Fe3O4 and a poly(ethylene glycol)-based deep eutectic solvent. Microchim Acta 184, 4133–4140 (2017). https://doi.org/10.1007/s00604-017-2444-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2444-4

Keywords

Navigation