Log in

Determination of cytochrome c based on its enhancing effect on the electrogenerated chemiluminescence of carbon quantum dots

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Carbon dots (C-dots) display strong cathodic electrogenerated chemiluminescence (ECL) in neutral aqueous solution in the presence of potassium persulfate. ECL intensities strongly depend on the method of synthesis of C-dots. The reactions between the electrochemically reduced intermediates of C-dots and potassium persulfate generate a strong ECL signal. Spectral and electrochemical studies revealed that cytochrome c reacts with potassium persulfate before its electrochemical reduction to generate the strong oxidant radical SO4 •- which reacts with C-dots to give an enhanced ECL signal. This finding was exploited to design a sensitive ECL assay for cytochrome c. The effects of the amount of C-dots, the pH value, and the persulfate concentration were optimized. Under the optimal conditions, the ECL signals (generated at −1.4 V) increase linearly with the concentration of cytochrome c in the range from 1.0 nM to 10 μM, with a detection limit of 0.2 nM. The modified electrode exhibits high sensitivity and good selectivity.

Carbon dots display strong cathodic electrogenerated chemiluminescence (ECL) in neutral condition with potassium persulfate as coreactant. Cytochrome c strongly enhances the ECL signal, and can be sensitively detected by exploiting this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Galian RE, Guardia MDL (2009) The use of quantum dots in organic chemistry. TrAC. Trends Anal Chem 28:279–291

    Article  CAS  Google Scholar 

  2. Freeman R, Willner I (2012) Optical molecular sensing with semiconductor quantum dots (QDs). Chem Soc Rev 41:4067–4085

    Article  CAS  Google Scholar 

  3. Li JJ, Zhu JJ (2013) Quantum dots for fluorescent biosensing and bio-imaging applications. Analyst 138:2506–2515

    Article  CAS  Google Scholar 

  4. Costas-Mora I, Romero V, Lavilla I, Bendicho C (2014) An overview of recent advances in the application of quantum dots as luminescent probes to inorganic-trace analysis. TrAC Trends Anal Chem 57:64–72

    Article  CAS  Google Scholar 

  5. Ding ZF, Quinn BM, Haram SK, Pell LE, Korgel BA, Bard AJ (2002) Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296:1293–1296

    Article  CAS  Google Scholar 

  6. Li J, Guo SJ, Wang EK (2012) Recent advances in new luminescent nanomaterials for electrochemiluminescence sensors. RSC Adv 2:3579–3586

    Article  CAS  Google Scholar 

  7. Zhao QL, Zhang ZL, Huang BH, Peng J, Zhang M, Pang DW (2008) Facile preparation of low cytotoxicity fluorescent carbon nanocrystals. Chem Commun 44:5116–5118

    Article  Google Scholar 

  8. Liu RL, Wu DQ, Liu SH, Koynov K, Knoll W, Li Q (2009) An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew Chem Int Ed 48:4598–4601

    Article  Google Scholar 

  9. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49:6726–6744

    Article  CAS  Google Scholar 

  10. Long YM, Zhou CH, Zhang ZL, Tian ZQ, Bao L, Lin Y, Pang DW (2012) Shifting and non-shifting fluorescence emitted by carbon nanodots. J Mater Chem 22:5917–5920

    Article  CAS  Google Scholar 

  11. Wu LD, Zhang Y, Wang YH, Ge SG, Liu HY, Yan M, Yu JH (2016) A paper-based electrochemiluminescence electrode as an aptamer-based cytosensor using PtNi@carbon dots as nanolabels for detection of cancer cells and for in-situ screening of anticancer drugs. Microchim Acta 183:1873–1880

    Article  CAS  Google Scholar 

  12. Zhao AD, Chen ZW, Zhao CQ, Gao N, Ren JS, Qu XG (2015) Recent advances in bioapplications of C-dots. Carbon 85:309–327

    Article  CAS  Google Scholar 

  13. Dai H, Yang CP, Tong YW, Wu GF, Ma XL, Lin YY, Chen GN (2012) Label-free electrochemiluminescent immunosensor for ɑ-fetoprotein: performance of Nafion-carbon nanodots nanocomposite film as antibody carriers. Chem Commun 48:3055–3057

    Article  CAS  Google Scholar 

  14. Huang QT, Hu SR, Zhang HQ, Chen JH, He YS, Li FM, Weng W, Ni JC, Bao XX, Lin Y (2013) Carbon dots and chitosan composite film based biosensor for the sensitive and selective determination of dopamine. Analyst 138:5417–5423

    Article  CAS  Google Scholar 

  15. Yang SL, Liang JS, Luo SL, Liu CB, Tang YH (2013) Supersensitive detection of chlorinated phenols by multiple amplificaiton electrochemiluminescence sensing based on carbon quantum dots/graphene. Anal Chem 85:7720–7725

    Article  CAS  Google Scholar 

  16. Zheng LY, Chi YW, Dong YQ, Lin JP, Wang BB (2009) Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J Am Chem Soc 131:4564–4565

    Article  CAS  Google Scholar 

  17. Wang GX, Qian Y, Cao XX, **a XX (2012) Direct electrochemistry of cytochrome c on graphen/poly(3,4-ethylenedioxythiophene) nanocomposite modified electrode. Electrochem Commun 20:1–3

    Article  Google Scholar 

  18. Fan CH, Plaxco KW, Heeger AJ (2002) High-efficiency fluorescence quenching of conjugated polymers by proteins. J Am Chem Soc 124:5642–5643

    Article  CAS  Google Scholar 

  19. Wang T, Zhang SY, Mao CJ, Song JM, Niu HL, ** BK, Tian YP (2012) Enhanced electrochemiluminescence of CdSe quantum dots composited with grapheneoxide and chitosan for sensitive sensor. Biosens Bioelectron 31:369–375

    Article  CAS  Google Scholar 

  20. Hu XW, Mao CJ, Song JM, Niu HL, Zhang SY, Huang HP (2013) Fabrication of GO/PANi/CdSe nanocomposites for sensitive electrochemiluminescence biosensor. Biosens Bioelectron 41:372–378

    Article  CAS  Google Scholar 

  21. Guo YM, Wang Z, Shao HW, Jiang XY (2013) Hydrothermal synthesis of highly fluorescent carbon nanoparticles from sodium citrate and their use for the detection of mercury ions. Carbon 52:583–589

    Article  CAS  Google Scholar 

  22. Dong YQ, Shao JW, Chen CQ, Li H, Wang RX, Chi YW, Lin XM, Chen GN (2012) Blue luminescent graphene quantum dots and graphene oxide parpared by tuning the carbonizaiton degree of citric acid. Carbon 50:4738–4743

    Article  CAS  Google Scholar 

  23. Cao L, Wang X, Meziani MJ, Lu FS, Wang HF, Luo PG, Lin Y, Harruff BA, Veca M, Murray D, **e SY, Sun YP (2007) Carbon dots for multiphoton bioimaging. J Am Chem Soc 129:11318–11319

    Article  CAS  Google Scholar 

  24. Wang F, **e Z, Zhang H, Liu CY, Zhang YG (2011) Highly luminescent organosilane-functionalized carbon dots. Adv Funct Mater 21:1027–1031

    Article  CAS  Google Scholar 

  25. Liu HP, Ye T, Mao CD (2007) Fluorescent carbon nanoparticles derived from candle soot. Angew Chem 119:6593–6595

    Article  Google Scholar 

  26. Liu S, Tian JQ, Wang L, Zhang YW, Qin XY, Luo YL, Asiri AM, Al-Youbi AO, Sun XP (2012) Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of cu(II) ions. Adv Mater 24:2037–2941

    Article  CAS  Google Scholar 

  27. Bao L, Zhang ZL, Tian ZQ, Zhang L, Liu C, Lin Y, Qi BP, Pang DW (2011) Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism. Adv Mater 23:5801–5806

    Article  CAS  Google Scholar 

  28. Li HT, He XD, Liu Y, Huang H, Lian SY, Lee ST (2011) One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon 49:605–609

    Article  CAS  Google Scholar 

  29. Jaiswal A, Ghosh SS, Chattopadhyay A (2012) One step synthesis of C-dots by microwave mediated caramelization of poly(ethylene glycol). Chem Commun 48:407–409

    Article  CAS  Google Scholar 

  30. Cao M, Cao C, Liu MG, Wang P, Zhu CQ (2009) Selective fluorometry of cytochrome c using glutathione-capped CdTe quantum dots in weakly basic medium. Microchim Acta 165:341–346

    Article  CAS  Google Scholar 

  31. Dong YP, Wang J, Peng Y, Zhu JJ (2016) Electrogenerated chemiluminescence resonance energy transfer between luminol and CdS/graphene nanocomposite and its sensing application. J Electroanal Chem 781:109–113

    Article  CAS  Google Scholar 

  32. Ocana C, Lukic S, del Valle M (2015) Aptamer-antibody sandwich assay for cytochrome c employing an MWCNT platform and electrochemical impedance. Microchim Acta 182:2045–2053

    Article  CAS  Google Scholar 

  33. Liu JM, Yan XP (2011) Ultrasensitive, selective and simultaneous detection of cytochrome c and insulin based on immunoassay and aptamer-based bioassay in combination with au/ag nanoparticle tagging and ICP-MS detection. J Anal At Spectrom 26:1191–1197

    Article  CAS  Google Scholar 

  34. Dong YP, Gao TT, Zhou Y, Zhu JJ (2014) Electrogenerated chemiluminescence resonance energy transfer between luminal and CdSe@ZnS quantum dots and its sensing application in the determination of thrombin. Anal Chem 86:11373–11379

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by National Natural Science Foundation of China (No.21575002), Natural Science Foundation from the Bureau of Education of Anhui Province (No. KJ2015A075).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong** Dong or ChengMing Wang.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 541 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Peng, Y., Wang, J. et al. Determination of cytochrome c based on its enhancing effect on the electrogenerated chemiluminescence of carbon quantum dots. Microchim Acta 184, 2089–2095 (2017). https://doi.org/10.1007/s00604-017-2217-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2217-0

Keywords

Navigation