Log in

Sensitive aptamer-based fluorescence polarization assay for mercury(II) ions and cysteine using silver nanoparticles as a signal amplifier

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report here a signal amplifying strategy to construct polarization aptamer probes for small molecules. The method is based on the use of silver nanoparticles acting as a fluorescence polarization signal amplifier. It was applied to the sensitive and selective detection of the two model analytes mercury (II) and cysteine. The aptamer probes were conjugated to CdTe-CdS quantum dots and are shown to work well for both analytes. The analytical range for Hg(II) is from 10 nM to 0.4 μM, and the limit of detection is 6.6 nM. The respective range for cysteine is from 20 nM to 0.7 μM, and the LOD is 11 nM.

A signal polarization strategy for small molecules based on silver nanoparticles as a fluorescence polarization signal amplifier for sensitive and selective detection of mercury ions and cysteine was constructed

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tan SJ, Campolongo MJ, Luo D, Cheng WL (2011) Building plasmonic nanostructures with DNA. Nat Nanotechnol 6:268–276

    Article  CAS  Google Scholar 

  2. Link S, Wang ZL, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:4212–4217

    Article  CAS  Google Scholar 

  3. Jiang ZJ, Liu CY, Sun LW (2005) Catalytic properties of silver nanoparticles supported on silica spheres. J Phys Chem B 109:1730–1735

    Article  CAS  Google Scholar 

  4. Braun G, Lee SJ, Dante M, Nguyen TQ, Moskovits M, Reich N (2007) Suface-enhanced raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films. J Am Chem Soc 129:6378–6379

    Article  CAS  Google Scholar 

  5. Wei E, Lawlor A, Whelan A, Regan F (2008) The use of nanoparticles in anti-microbial materials and their characterization. Analyst (Cambridge, U K) 133:835–845

    Article  Google Scholar 

  6. Ye BC, Yin BC (2008) Highly sensitive detection of mercury(II) ions by fluorescence polarization enhanced by gold nanoparticles. Angew Chem, Int Ed 47:8386–8389

    Article  CAS  Google Scholar 

  7. Huang Y, Zhao S, Chen ZF, Liu YC, Liang H (2011) Ultrasensitive endonuclease activity and inhibition detection using gold nanoparticle-enhanced fluorescence polarization. Chem Commun 47:4763–4765

    Article  CAS  Google Scholar 

  8. Yin BC, Zuo P, Huo H, Zhong X, Ye BC (2010) DNAzyme self-assembled gold nanoparticles for determination of metal ions using fluorescence anisotropy assay. Anal Biochem 401:47–52

    Article  CAS  Google Scholar 

  9. Smith DS, Eremin SA (2008) Fluorescence polarization immunoassays and related methods for simple, high-throughput screening of small molecules. Anal Bioanal Chem 391:1499–1507

    Article  CAS  Google Scholar 

  10. Cui L, Zou Y, Lin N, Zhu Z, Jenkins G, Yang CJ (2012) Mass amplifying probe for sensitive fluorescence anisotropy detection of small molecules in complex biological samples. Anal Chem 84:5535–5541

    Article  CAS  Google Scholar 

  11. Zhang D, Lu M, Wang H (2011) Fluorescence anisotropy analysis for map** aptamer-protein interaction at the single nucleotide level. J Am Chem Soc 133:9188–9191

    Article  CAS  Google Scholar 

  12. Gokulrangan G, Unruh JR, Holub DF, Ingram B, Johnson CK, Wilson GS (2005) DNA aptamer-based bioanalysis of IgE by fluorescence anisotropy. Anal Chem 77:1963–1970

    Article  CAS  Google Scholar 

  13. Zhang D, Zhao Q, Zhao B, Huang H (2012) Fluorescence anisotropy reduction of allosteric aptamer for sensitive and specific protein signaling. Anal Chem 84:3070–3074

    Article  CAS  Google Scholar 

  14. Li M, Wang Q, Shi X, Hornak LA, Wu N (2011) Detection of mercury(II) by quantum dot/DNA/gold nanoparticle ensemble based nanosensor via nanometal surface energy transfer. Anal Chem 83:7061–7065

    Article  CAS  Google Scholar 

  15. Li D, Wieckowska A, Willner I (2008) Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. Angew Chem, Int Ed 47:3927–3931

    Article  CAS  Google Scholar 

  16. Zhu X, Zhou X, **ng D (2011) Ultrasensitive and selective detection of mercury(II) in aqueous solution by polymerase assisted fluoresecence amplification. Biosens Bioelectron 26:2666–2669

    Article  CAS  Google Scholar 

  17. Liu CW, Hsieh YT, Huang CC, Lin ZH, Chang HT (2008) Detection of mercury(II) based on Hg2+-DNA complexes inducing the aggregation of gold nanoparticles. Chem Commun 21:2242–2244

    Article  Google Scholar 

  18. Choi JK, Sargsyan G, Olive AM, Balaz M (2013) Highly sensitive and selective spectroscopic detection of mercury(II) in water by using pyridylporphyrin-DNA conjugates. Chemistry 19:2515–2522

    Article  CAS  Google Scholar 

  19. Lee JS, Ulmann PA, Han MS, Mirkin CA (2008) A DNA-gold nanoparticle-based colorimetric assay for the detection of cysteine. Nano Lett 8:529–522

    Article  CAS  Google Scholar 

  20. Stricks W, Kolthoff IM (1953) Reactions between mercuric mercury and cysteine and glutathione. Apparent dissociation constants, heats and entropies of formation of various forms of mercuric mercapto-cysteine and –glutathione. J Am Chem Soc 75:5673–5681

    Article  CAS  Google Scholar 

  21. Tian JN, Liu RJ, Zhao YC, Xu Q, Zhao SL (2009) Controllable synthesis and cell-imaging studies on CdTe quantum dots together capped by glutathione and thioglycolic acid. J Colloid Interface Sci 336:504–509

    Article  CAS  Google Scholar 

  22. Caswell KK, Wilson JN, Bunz UHF, Murphy CJ (2003) Preferential end-to-end assembly of gold nanorods by biotin-streptavidin connectors. J Am Chem Soc 125:13914–13915

    Article  CAS  Google Scholar 

  23. Munro CH, Smith WE, Garner M, Clarkson J, White PC (1995) Characterization of the surface of a citrate-reduced colloid optimized for use as a substrate for surface-enhanced resonance raman scattering. Langmuir 11:3712–3720

    Article  CAS  Google Scholar 

  24. Liu CH, Li ZP, Du BA, Duan XR, Wang YC (2006) Silver nanoparticle-based ultrasensitive chemiluminescent detection of DNA hybridization and single-nucleotide polymorphisms. Anal Chem 78:3738–3744

    Article  CAS  Google Scholar 

  25. Yu WW, Qu L, Guo W, Peng X (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854–2860

    Article  CAS  Google Scholar 

  26. Choi Y, Kim HP, Hong SM, Ryu JY, Han SJ, Song R (2009) In situ visualization of gene expression using polymer-coated quantum-dot–DNA conjugates. Small 5:2085–2091

    Article  CAS  Google Scholar 

  27. Tian JN, Liu RJ, Zhao YC, Peng Y, Hong X, Xu Q, Zhao SL (2010) Synthesis of CdTe/CdS/ZnS quantum dots and the application in imaging of hepatocellular carcinoma cells and immunoassay for alpha fetoprotein. Nanotechnology 21(30):305101–305108

    Article  Google Scholar 

  28. Li T, Zhou YY, Sun JY, Tang DB, Guo SX, Ding XP (2011) Ultrasensitive detection of mercury(II) ion using CdTe quantum dots in sol–gel-derived silica spheres coated with calix[6]arene as fluorescent probes. Microchim Acta 175:113–119

    Article  CAS  Google Scholar 

  29. Li T, Dong S, Wang E (2009) Label-free colorimetric detection of aqueous mercury zon (Hg2+) using Hg2+ modulated Gquadruplex-based DNAzymes. Anal Chem 81:2144

    Article  CAS  Google Scholar 

  30. Liu BY, Zeng F, Wu SZ, Wang JS, Tang FC (2013) Ratiometric sensing of mercury(II) based on a FRET process on silica core-shell nanoparticles acting as vehicles. Microchim Acta 180:845–853

    Article  CAS  Google Scholar 

  31. Wang RZ, Zhou DL, Huang H, Zhang M, Feng JJ, Wang AJ (2013) Water-soluble homo-oligonucleotide stabilized fluorescent silver nanoclusters as fluorescent probes for mercury ion. Microchim Acta 180:1287–1293

    Article  CAS  Google Scholar 

  32. Shen TF, Yue QL, Jian XX, Wang L, Xu SL, Li HB, Gu XH, Zhang SQ, Liu JF (2013) A reusable and sensitive biosensor for total mercury in canned fish based on fluorescence polarization. Talanta 117:81–86

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by National Natural Science Foundation of China (No. 21165004, 21163002), the Guangxi Natural Science Foundation of China (2010GXNSFF013001, 2012GXNSFBA053022), Innovation Plan in Graduate Education of Guangxi Province (2010106020703 M70) and the project of Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources(Guangxi Normal University), Ministry of Education of China(CMEMR2011-14).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianniao Tian or Yanchun Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 296 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Tian, J., Hu, K. et al. Sensitive aptamer-based fluorescence polarization assay for mercury(II) ions and cysteine using silver nanoparticles as a signal amplifier. Microchim Acta 181, 1423–1430 (2014). https://doi.org/10.1007/s00604-014-1296-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1296-4

Keywords

Navigation