Log in

Magnetic nanoparticles modified with polydimethylsiloxane and multi-walled carbon nanotubes for solid-phase extraction of fluoroquinolones

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have surface-functionalized magnetic particles (MPs) with polydimethylsiloxane and multi-walled carbon nanotubes in a two-step reaction. The MPs were applied to solid-phase extraction of the fluoroquinolones ofloxacin, norfloxacin, ciprofloxacin, enrofloxacin prior to their determination by capillary liquid chromatography. The effects of sample pH, adsorption time, type of eluent, desorption time and desorption temperature were investigated. Under the optimum conditions, the extraction efficiencies are in the range from 81.5 % to 94.1 %, with relative standard deviations (RSDs) of <7.6 %. The detection limits vary from 0.24 to 0.48 ng mL−1. The method was applied to the analysis of spiked mineral water and honey. The recoveries for the fluoroquinolones in the real samples range from 84.0 % to 112 %, with RSDs ranging from 2.9 % to 7.8 %.

 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tian H, Chang XJ, Hu Z, Yang K, He Q, Zhang LN, Tu ZF (2010) Activated carbon modified with 4-(8-hydroxyquinoline-azo) benzamidine for selective solid-phase extraction and preconcentration of trace lead from environmental samples. Microchim Acta 171:225–232

    Article  CAS  Google Scholar 

  2. Rodriguez-Mozaz S, López de Alda MJ, Barceló D (2004) Monitoring of estrogens, pesticides and bisphenol A in natural waters and drinking water treatment plants by solid-phase extraction-liquid chromatography-mass spectrometry. J Chromatogr A 1045:85–92

    Article  CAS  Google Scholar 

  3. Brunet BR, Barnes AJ, Scheidweiler KB, Mura P, Huestis MA (2008) Development and validation of a solid-phase extraction gas chromatography–mass spectrometry method for the simultaneous quantification of methadone, heroin, cocaine and metabolites in sweat. Anal Bioanal Chem 392:115–127

    Article  CAS  Google Scholar 

  4. Lee HB, Peart TE, Svoboda ML (2007) Determination of ofloxacin, norfloxacin, and ciprofloxacin in sewage by selective solid-phase extraction, liquid chromatography with fluorescence detection, and liquid chromatography-tandem mass spectrometry. J Chromatogr A 1139:45–52

    Article  CAS  Google Scholar 

  5. Corbera M, Hidalgo M, Salvadó V (2006) Extraction and preconcentration of the herbicide glyphosate and its metabolite AMPA using anion-exchange solid phases. Microchim Acta 153:203–209

    Article  CAS  Google Scholar 

  6. Seifrtová M, Pena A, Lino CM, Solich P (2008) Determination of fluoroquinolone antibiotics in hospital and municipal wastewaters in Coimbra by liquid chromatography with a monolithic column and fluorescence detection. Anal Bioanal Chem 391:799–805

    Article  Google Scholar 

  7. Heller DN, Nochetto CB, Rummel NG, Thomas MH (2006) Development of multiclass methods for drug residues in eggs: hydrophilic solid-phase extraction cleanup and liquid chromatography/tandem mass spectrometry analysis of tetracycline, fluoroquinolone, sulfonamide, and β-lactam residues. J Agric Food Chem 54:5267–5278

    Article  CAS  Google Scholar 

  8. Vanderford BJ, Pearson RA, Rexing DJ, Snyder SA (2003) Analysis of endocrine disruptors, pharmaceuticals, and personal care products in water using liquid chromatography/tandem mass spectrometry. Anal Chem 75:6265–6274

    Article  CAS  Google Scholar 

  9. Hennion MC (1999) Solid-phase extraction: method development, sorbents, and coupling with liquid chromatography. J Chromatogr A 856:3–54

    Article  CAS  Google Scholar 

  10. Huck CW, Bonn GK (2000) Recent developments in polymer-based sorbents for solid-phase extraction. J Chromatogr A 885:51–72

    Article  CAS  Google Scholar 

  11. Šafaříková M, Šafařík I (1999) Magnetic solid-phase extraction. J Magn Magn Mater 194:108–112

    Article  Google Scholar 

  12. Huang CZ, **e W, Li X, Zhang JP (2011) Speciation of inorganic arsenic in environmental waters using magnetic solid phase extraction and preconcentration followed by ICP-MS. Microchim Acta 173:165–172

    Article  CAS  Google Scholar 

  13. Liu YL, Jia L (2008) Analysis of estrogens in water by magnetic octadecylsilane particles extraction and swee** micellar electrokinetic chromatography. Microchem J 89:72–76

    Article  CAS  Google Scholar 

  14. Ballesteros-Gómez A, Rubio S (2009) Hemimicelles of alkyl carboxylates chemisorbed onto magnetic nanoparticles: Study and application to the extraction of carcinogenic polycyclic aromatic hydrocarbons in environmental water samples. Anal Chem 81:9012–9020

    Article  Google Scholar 

  15. Wu QH, Liu M, Ma XX, Wang WN, Wang C, Zang XH, Wang Z (2012) Extraction of phthalate esters from water and beverages using a graphene-based magnetic nanocomposite prior to their determination by HPLC. Microchim Acta 177:23–30

    Article  CAS  Google Scholar 

  16. Lin PC, Tseng MC, Su AK, Chen YJ, Lin CC (2007) Functionalized magnetic nanoparticles for small-molecule isolation, identification, and quantification. Anal Chem 79:3401–3408

    Article  CAS  Google Scholar 

  17. Rodriguez JA, Espinosa J, Aguilar-Arteaga K, Ibarra IS, Miranda JM (2010) Determination of tetracyclines in milk samples by magnetic solid phase extraction flow injection analysis. Microchim Acta 171:407–413

    Article  CAS  Google Scholar 

  18. Gao Q, Luo D, Ding J, Feng YQ (2010) Rapid magnetic solid-phase extraction based on magnetite/silica/poly(methacrylic acid-co-ethylene glycol dimethacrylate) composite microspheres for the determination of sulfonamide in milk samples. J Chromatogr A 1217:5602–5609

    Article  CAS  Google Scholar 

  19. Sun L, Sun X, Du XB, Yue YS, Chen LG, Xu HY, Zeng QL, Wang H, Ding L (2010) Determination of sulfonamides in soil samples based on alumina-coated magnetite nanoparticles as adsorbents. Anal Chim Acta 665:185–192

    Article  CAS  Google Scholar 

  20. Kataoka H, Lord HL, Pawliszyn J (2000) Applications of solid-phase microextraction in food analysis. J Chromatogr A 880:35–62

    Article  CAS  Google Scholar 

  21. Lange JJ, Collinson MM, Culbertson CT, Higgins DA (2009) Single-molecule studies of oligomer extraction and uptake of dyes in poly(dimethylsiloxane) films. Anal Chem 81:10089–10096

    Article  CAS  Google Scholar 

  22. Bocchini P, Monaco DD, Pozzi R, Pinelli F, Galletti GC (2009) Solid-phase microextraction coupled to gas chromatography with flame ionization detect ion for monitoring of organic solvents in working areas. Microchim Acta 165:271–278

    Article  CAS  Google Scholar 

  23. Mayer P, Vaes WHJ, Hermens JLM (2000) Absorption of hydrophobic compounds into the poly(dimethylsiloxane) coating of solid-phase microextraction fibers: high partition coefficients and fluorescence microscopy images. Anal Chem 72:459–464

    Article  CAS  Google Scholar 

  24. Wong EW, Sheehan PE, Liebert CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975

    Article  CAS  Google Scholar 

  25. Jiang Q, Qu MZ, Zhang BL, Yu ZL (2002) Preparation of activated carbon nanotubes. Carbon 40:2743–2745

    Article  CAS  Google Scholar 

  26. Lijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  27. Dai LM, He PG, Li SN (2003) Functionalized surfaces based on polymers and carbon nanotubes for some biomedical and optoelectronic applications. Nanotechnology 14:1081–1097

    Article  CAS  Google Scholar 

  28. Zhou QX, **ao JP, Wang WD (2007) Comparison of multiwalled carbon nanotubes and a conventional absorbent on the enrichment of sulfonylurea herbicides in water samples. Anal Sci 23:189–192

    Article  Google Scholar 

  29. Dong MF, Ma YQ, Zhao EC, Qian CF, Han LJ, Jiang SR (2009) Using multiwalled carbon nanotubes as solid phase extraction adsorbents for determination of chloroacetanilide herbicides in water. Microchim Acta 165:123–128

    Article  CAS  Google Scholar 

  30. Zhao Q, Wei F, Luo YB, Ding J, **ao N, Feng YQ (2011) Rapid magnetic solid-phase extraction based on magnetic multiwalled carbon nanotubes for the determination of polycyclic aromatic hydrocarbons in edible oils. J Agric Food Chem 59:12794–12800

    Article  CAS  Google Scholar 

  31. Morales-Cid G, Fekete A, Simonet BM, Lehmann R, Cárdenas S, Zhang XM, Valcárcel M, Schmitt-Kopplin P (2010) In situ synthesis of magnetic multiwalled carbon nanotube composites for the clean-up of (fluoro)quinolones from human plasma prior to ultrahigh pressure liquid chromatography analysis. Anal Chem 82:2743–2752

    Article  CAS  Google Scholar 

  32. Guan Y, Jiang C, Hu CF, Jia L (2010) Preparation of multi-walled carbon nanotubes functionalized magnetic particles by sol–gel technology and its application in extraction of estrogens. Talanta 83:337–343

    Article  CAS  Google Scholar 

  33. Speltini A, Sturini M, Maraschi F, Profumo A, Albini A (2011) Analytical methods for the determination of fluoroquinolones in solid environmental matrices. Trends Anal Chem 30:1337–1350

    Article  CAS  Google Scholar 

  34. Herrera-Herrera AV, Hernández-Borges J, Rodríguez-Delgado MÁ (2009) Fluoroquinolone antibiotic determination in bovine, ovine and caprine milk using solid-phase extraction and high-performance liquid chromatography-fluorescence detection with ionic liquids as mobile phase additives. J Chromatogr A 1216:7281–7287

    Article  CAS  Google Scholar 

  35. Esponda SM, Torres Padrón ME, Ferrera ZS, Santana Rodríguez JJ (2009) Solid-phase microextraction with micellar desorption and HPLC-fluorescence detection for the analysis of fluoroquinolones residues in water samples. Anal Bioanal Chem 394:927–935

    Article  CAS  Google Scholar 

  36. Benito-Peña E, Urraca JL, Sellergren B, Moreno-Bondi MC (2008) Solid-phase extraction of fluoroquinolones from aqueous samples using a water-compatible stochiometrically imprinted polymer. J Chromatogr A 1208:62–70

    Article  Google Scholar 

  37. Yan HY, Wang H, Qin XY, Liu BM, Du JJ (2011) Ultrasound-assisted dispersive liquid-liquid microextraction for determination of fluoroquinolones in pharmaceutical wastewater. J Pharmaceut Biomed 54:53–57

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21075044, 21175048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Jia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, S., Jiang, C., Lin, Y. et al. Magnetic nanoparticles modified with polydimethylsiloxane and multi-walled carbon nanotubes for solid-phase extraction of fluoroquinolones. Microchim Acta 179, 257–264 (2012). https://doi.org/10.1007/s00604-012-0894-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0894-2

Keywords

Navigation